Nuprl Lemma : hdf-parallel_wf
∀[A,B:Type]. ∀[X,Y:hdataflow(A;B)].  X || Y ∈ hdataflow(A;B) supposing valueall-type(B)
Proof
Definitions occuring in Statement : 
hdf-parallel: X || Y
, 
hdataflow: hdataflow(A;B)
, 
valueall-type: valueall-type(T)
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
universe: Type
Lemmas : 
mk-hdf_wf, 
hdf-halted_wf, 
bool_wf, 
eqtt_to_assert, 
hdf-ap_wf, 
bag_wf, 
valueall-type-has-valueall, 
bag-valueall-type, 
bag-append_wf, 
evalall-reduce, 
valueall-type_wf, 
hdataflow_wf
\mforall{}[A,B:Type].  \mforall{}[X,Y:hdataflow(A;B)].    X  ||  Y  \mmember{}  hdataflow(A;B)  supposing  valueall-type(B)
Date html generated:
2015_07_17-AM-08_06_17
Last ObjectModification:
2015_01_27-PM-00_15_39
Home
Index