Nuprl Lemma : mk-hdf_wf

[A,B,S:Type]. ∀[s0:S]. ∀[H:S ─→ 𝔹]. ∀[G:S ─→ A ─→ (S × bag(B))].  (mk-hdf(s,m.G[s;m];s.H[s];s0) ∈ hdataflow(A;B))


Proof




Definitions occuring in Statement :  mk-hdf: mk-hdf(s,m.G[s; m];st.H[st];s0) hdataflow: hdataflow(A;B) bool: 𝔹 uall: [x:A]. B[x] so_apply: x[s1;s2] so_apply: x[s] member: t ∈ T function: x:A ─→ B[x] product: x:A × B[x] universe: Type bag: bag(T)
Lemmas :  nat_properties less_than_transitivity1 less_than_irreflexivity ge_wf less_than_wf primrec0_lemma decidable__le subtract_wf false_wf not-ge-2 less-iff-le condition-implies-le minus-one-mul zero-add minus-add minus-minus add-associates add-swap add-commutes add_functionality_wrt_le add-zero le-add-cancel bool_wf eqtt_to_assert primrec-unroll eq_int_wf assert_of_eq_int eqff_to_assert equal_wf bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot neg_assert_of_eq_int it_wf primrec_wf not-le-2 not-equal-2 le_wf top_wf bag_wf unit_wf2 int_seg_wf nat_wf
\mforall{}[A,B,S:Type].  \mforall{}[s0:S].  \mforall{}[H:S  {}\mrightarrow{}  \mBbbB{}].  \mforall{}[G:S  {}\mrightarrow{}  A  {}\mrightarrow{}  (S  \mtimes{}  bag(B))].
    (mk-hdf(s,m.G[s;m];s.H[s];s0)  \mmember{}  hdataflow(A;B))



Date html generated: 2015_07_17-AM-08_05_14
Last ObjectModification: 2015_01_27-PM-00_16_53

Home Index