Nuprl Lemma : on-loc-class-program-eq-hdf

[Info,B:Type]. ∀[pr1,pr2:Id ─→ Id ─→ hdataflow(Info;B)].
  (on-loc-class-program(pr1) on-loc-class-program(pr2) ∈ (Id ─→ hdataflow(Info;B))) supposing 
     ((pr1 pr2 ∈ (Id ─→ Id ─→ hdataflow(Info;B))) and 
     valueall-type(B))


Proof




Definitions occuring in Statement :  on-loc-class-program: on-loc-class-program(pr) Id: Id valueall-type: valueall-type(T) uimplies: supposing a uall: [x:A]. B[x] function: x:A ─→ B[x] universe: Type equal: t ∈ T hdataflow: hdataflow(A;B)
Lemmas :  and_wf equal_wf Id_wf hdataflow_wf valueall-type_wf

Latex:
\mforall{}[Info,B:Type].  \mforall{}[pr1,pr2:Id  {}\mrightarrow{}  Id  {}\mrightarrow{}  hdataflow(Info;B)].
    (on-loc-class-program(pr1)  =  on-loc-class-program(pr2))  supposing 
          ((pr1  =  pr2)  and 
          valueall-type(B))



Date html generated: 2015_07_22-PM-00_04_04
Last ObjectModification: 2015_01_28-AM-09_53_25

Home Index