Nuprl Lemma : parallel-class-program-wf-hdf
∀[A,B:Type].  ∀[Xpr,Ypr:Id ─→ hdataflow(A;B)].  (Xpr || Ypr ∈ Id ─→ hdataflow(A;B)) supposing valueall-type(B)
Proof
Definitions occuring in Statement : 
parallel-class-program: X || Y
, 
Id: Id
, 
valueall-type: valueall-type(T)
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
function: x:A ─→ B[x]
, 
universe: Type
, 
hdataflow: hdataflow(A;B)
Lemmas : 
hdf-parallel_wf, 
Id_wf, 
hdataflow_wf, 
valueall-type_wf
Latex:
\mforall{}[A,B:Type].
    \mforall{}[Xpr,Ypr:Id  {}\mrightarrow{}  hdataflow(A;B)].    (Xpr  ||  Ypr  \mmember{}  Id  {}\mrightarrow{}  hdataflow(A;B))  supposing  valueall-type(B)
Date html generated:
2015_07_22-PM-00_03_51
Last ObjectModification:
2015_01_28-AM-09_52_37
Home
Index