Nuprl Lemma : parallel-class-program-wf-hdf

[A,B:Type].  ∀[Xpr,Ypr:Id ─→ hdataflow(A;B)].  (Xpr || Ypr ∈ Id ─→ hdataflow(A;B)) supposing valueall-type(B)


Proof




Definitions occuring in Statement :  parallel-class-program: || Y Id: Id valueall-type: valueall-type(T) uimplies: supposing a uall: [x:A]. B[x] member: t ∈ T function: x:A ─→ B[x] universe: Type hdataflow: hdataflow(A;B)
Lemmas :  hdf-parallel_wf Id_wf hdataflow_wf valueall-type_wf

Latex:
\mforall{}[A,B:Type].
    \mforall{}[Xpr,Ypr:Id  {}\mrightarrow{}  hdataflow(A;B)].    (Xpr  ||  Ypr  \mmember{}  Id  {}\mrightarrow{}  hdataflow(A;B))  supposing  valueall-type(B)



Date html generated: 2015_07_22-PM-00_03_51
Last ObjectModification: 2015_01_28-AM-09_52_37

Home Index