Nuprl Lemma : state-class1-program-wf-hdf
∀[Info,A,B:Type]. ∀[init:Id ─→ B]. ∀[f:Id ─→ A ─→ B ─→ B]. ∀[pr:Id ─→ hdataflow(Info;A)].
  (state-class1-program(init;f;pr) ∈ Id ─→ hdataflow(Info;B)) supposing (valueall-type(B) and (↓B))
Proof
Definitions occuring in Statement : 
state-class1-program: state-class1-program(init;tr;pr)
, 
Id: Id
, 
valueall-type: valueall-type(T)
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
squash: ↓T
, 
member: t ∈ T
, 
function: x:A ─→ B[x]
, 
universe: Type
, 
hdataflow: hdataflow(A;B)
Lemmas : 
loop-class-state-program-wf-hdf, 
single-bag_wf, 
eclass1-program-wf-hdf, 
function-valueall-type, 
valueall-type-value-type, 
valueall-type_wf, 
squash_wf, 
Id_wf, 
hdataflow_wf
Latex:
\mforall{}[Info,A,B:Type].  \mforall{}[init:Id  {}\mrightarrow{}  B].  \mforall{}[f:Id  {}\mrightarrow{}  A  {}\mrightarrow{}  B  {}\mrightarrow{}  B].  \mforall{}[pr:Id  {}\mrightarrow{}  hdataflow(Info;A)].
    (state-class1-program(init;f;pr)  \mmember{}  Id  {}\mrightarrow{}  hdataflow(Info;B))  supposing  (valueall-type(B)  and  (\mdownarrow{}B))
Date html generated:
2015_07_22-PM-00_05_10
Last ObjectModification:
2015_01_28-AM-09_53_20
Home
Index