Nuprl Lemma : loop-class-state-program-wf-hdf

[Info,B:Type].
  ∀[init:Id ─→ bag(B)]. ∀[pr:Id ─→ hdataflow(Info;B ─→ B)].
    (loop-class-state-program(pr;init) ∈ Id ─→ hdataflow(Info;B)) 
  supposing valueall-type(B)


Proof




Definitions occuring in Statement :  loop-class-state-program: loop-class-state-program(pr;init) Id: Id valueall-type: valueall-type(T) uimplies: supposing a uall: [x:A]. B[x] member: t ∈ T function: x:A ─→ B[x] universe: Type bag: bag(T) hdataflow: hdataflow(A;B)
Lemmas :  hdf-state_wf Id_wf hdataflow_wf bag_wf valueall-type_wf

Latex:
\mforall{}[Info,B:Type].
    \mforall{}[init:Id  {}\mrightarrow{}  bag(B)].  \mforall{}[pr:Id  {}\mrightarrow{}  hdataflow(Info;B  {}\mrightarrow{}  B)].
        (loop-class-state-program(pr;init)  \mmember{}  Id  {}\mrightarrow{}  hdataflow(Info;B)) 
    supposing  valueall-type(B)



Date html generated: 2015_07_22-PM-00_03_10
Last ObjectModification: 2015_01_28-AM-09_53_08

Home Index