Nuprl Lemma : hdf-state_wf
∀[A,B:Type]. ∀[X:hdataflow(A;B ─→ B)]. ∀[bs:bag(B)].  hdf-state(X;bs) ∈ hdataflow(A;B) supposing valueall-type(B)
Proof
Definitions occuring in Statement : 
hdf-state: hdf-state(X;bs)
, 
hdataflow: hdataflow(A;B)
, 
valueall-type: valueall-type(T)
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
function: x:A ─→ B[x]
, 
universe: Type
, 
bag: bag(T)
Lemmas : 
valueall-type_wf, 
bag_wf, 
hdataflow_wf, 
bfalse_wf, 
hdf-ap_wf, 
valueall-type-has-valueall, 
bag-valueall-type, 
bag-combine_wf, 
bag-map_wf, 
evalall-reduce, 
bag-null_wf, 
bool_wf, 
eqtt_to_assert, 
assert-bag-null, 
eqff_to_assert, 
equal_wf, 
bool_cases_sqequal, 
subtype_base_sq, 
bool_subtype_base, 
assert-bnot, 
equal-wf-T-base, 
mk-hdf_wf
\mforall{}[A,B:Type].  \mforall{}[X:hdataflow(A;B  {}\mrightarrow{}  B)].  \mforall{}[bs:bag(B)].
    hdf-state(X;bs)  \mmember{}  hdataflow(A;B)  supposing  valueall-type(B)
Date html generated:
2015_07_17-AM-08_05_49
Last ObjectModification:
2015_01_27-PM-00_16_02
Home
Index