Nuprl Lemma : bag-null_wf

T:Type. ∀bs:bag(T).  (bag-null(bs) ∈ 𝔹)


Proof




Definitions occuring in Statement :  bag-null: bag-null(bs) bag: bag(T) bool: 𝔹 all: x:A. B[x] member: t ∈ T universe: Type
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T subtype_rel: A ⊆B uall: [x:A]. B[x] implies:  Q prop: bag-null: bag-null(bs)
Lemmas referenced :  bag-subtype-list list_wf top_wf equal_wf bag_wf null_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut hypothesisEquality applyEquality introduction extract_by_obid sqequalHypSubstitution dependent_functionElimination thin hypothesis sqequalRule isectElimination equalityTransitivity equalitySymmetry independent_functionElimination cumulativity universeEquality

Latex:
\mforall{}T:Type.  \mforall{}bs:bag(T).    (bag-null(bs)  \mmember{}  \mBbbB{})



Date html generated: 2017_10_01-AM-08_45_31
Last ObjectModification: 2017_07_26-PM-04_30_48

Theory : bags


Home Index