Nuprl Lemma : bag-null_wf
∀T:Type. ∀bs:bag(T).  (bag-null(bs) ∈ 𝔹)
Proof
Definitions occuring in Statement : 
bag-null: bag-null(bs)
, 
bag: bag(T)
, 
bool: 𝔹
, 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
universe: Type
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
subtype_rel: A ⊆r B
, 
uall: ∀[x:A]. B[x]
, 
implies: P 
⇒ Q
, 
prop: ℙ
, 
bag-null: bag-null(bs)
Lemmas referenced : 
bag-subtype-list, 
list_wf, 
top_wf, 
equal_wf, 
bag_wf, 
null_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
cut, 
hypothesisEquality, 
applyEquality, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
hypothesis, 
sqequalRule, 
isectElimination, 
equalityTransitivity, 
equalitySymmetry, 
independent_functionElimination, 
cumulativity, 
universeEquality
Latex:
\mforall{}T:Type.  \mforall{}bs:bag(T).    (bag-null(bs)  \mmember{}  \mBbbB{})
Date html generated:
2017_10_01-AM-08_45_31
Last ObjectModification:
2017_07_26-PM-04_30_48
Theory : bags
Home
Index