Nuprl Lemma : assert-bag-null
∀[T:Type]. ∀[bs:bag(T)].  uiff(↑bag-null(bs);bs = {} ∈ bag(T))
Proof
Definitions occuring in Statement : 
bag-null: bag-null(bs)
, 
empty-bag: {}
, 
bag: bag(T)
, 
assert: ↑b
, 
uiff: uiff(P;Q)
, 
uall: ∀[x:A]. B[x]
, 
universe: Type
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uiff: uiff(P;Q)
, 
and: P ∧ Q
, 
uimplies: b supposing a
, 
prop: ℙ
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
bag: bag(T)
, 
quotient: x,y:A//B[x; y]
, 
squash: ↓T
, 
so_lambda: λ2x y.t[x; y]
, 
so_apply: x[s1;s2]
, 
true: True
, 
subtype_rel: A ⊆r B
, 
bag-null: bag-null(bs)
, 
empty-bag: {}
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
assert: ↑b
, 
ifthenelse: if b then t else f fi 
, 
null: null(as)
, 
nil: []
, 
it: ⋅
, 
btrue: tt
Lemmas referenced : 
assert_wf, 
bag-null_wf, 
assert_witness, 
equal-wf-T-base, 
bag_wf, 
list_wf, 
permutation_wf, 
permutation_weakening, 
equal-wf-base, 
equal_wf, 
squash_wf, 
true_wf, 
quotient-member-eq, 
permutation-equiv, 
empty-bag_wf, 
assert_of_null, 
length_wf_nat, 
nat_wf, 
subtype_rel_set, 
list-subtype-bag
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
independent_pairFormation, 
hypothesis, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
dependent_functionElimination, 
cumulativity, 
hypothesisEquality, 
equalityTransitivity, 
equalitySymmetry, 
independent_functionElimination, 
baseClosed, 
sqequalRule, 
productElimination, 
independent_pairEquality, 
isect_memberEquality, 
axiomEquality, 
because_Cache, 
universeEquality, 
promote_hyp, 
lambdaFormation, 
independent_isectElimination, 
pointwiseFunctionality, 
pertypeElimination, 
productEquality, 
applyEquality, 
lambdaEquality, 
imageElimination, 
natural_numberEquality, 
imageMemberEquality, 
dependent_set_memberEquality, 
hyp_replacement, 
applyLambdaEquality
Latex:
\mforall{}[T:Type].  \mforall{}[bs:bag(T)].    uiff(\muparrow{}bag-null(bs);bs  =  \{\})
Date html generated:
2017_10_01-AM-08_45_38
Last ObjectModification:
2017_07_26-PM-04_30_50
Theory : bags
Home
Index