Nuprl Lemma : assert-bag-null

[T:Type]. ∀[bs:bag(T)].  uiff(↑bag-null(bs);bs {} ∈ bag(T))


Proof




Definitions occuring in Statement :  bag-null: bag-null(bs) empty-bag: {} bag: bag(T) assert: b uiff: uiff(P;Q) uall: [x:A]. B[x] universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a prop: all: x:A. B[x] implies:  Q bag: bag(T) quotient: x,y:A//B[x; y] squash: T so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] true: True subtype_rel: A ⊆B bag-null: bag-null(bs) empty-bag: {} so_lambda: λ2x.t[x] so_apply: x[s] assert: b ifthenelse: if then else fi  null: null(as) nil: [] it: btrue: tt
Lemmas referenced :  assert_wf bag-null_wf assert_witness equal-wf-T-base bag_wf list_wf permutation_wf permutation_weakening equal-wf-base equal_wf squash_wf true_wf quotient-member-eq permutation-equiv empty-bag_wf assert_of_null length_wf_nat nat_wf subtype_rel_set list-subtype-bag
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut independent_pairFormation hypothesis extract_by_obid sqequalHypSubstitution isectElimination thin dependent_functionElimination cumulativity hypothesisEquality equalityTransitivity equalitySymmetry independent_functionElimination baseClosed sqequalRule productElimination independent_pairEquality isect_memberEquality axiomEquality because_Cache universeEquality promote_hyp lambdaFormation independent_isectElimination pointwiseFunctionality pertypeElimination productEquality applyEquality lambdaEquality imageElimination natural_numberEquality imageMemberEquality dependent_set_memberEquality hyp_replacement applyLambdaEquality

Latex:
\mforall{}[T:Type].  \mforall{}[bs:bag(T)].    uiff(\muparrow{}bag-null(bs);bs  =  \{\})



Date html generated: 2017_10_01-AM-08_45_38
Last ObjectModification: 2017_07_26-PM-04_30_50

Theory : bags


Home Index