Nuprl Lemma : causal-class-rel-in-out_wf

[f:Name ─→ Type]. ∀[T:Type]. ∀[es:EO+(Message(f))]. ∀[m:Id × Message(f)]. ∀[class_out:EClass(Id × Message(f))]. ∀[x:T].
[class_in:EClass(T)].
  (if class_out outputs (m) then class_in observed x ∈ ℙ')


Proof




Definitions occuring in Statement :  causal-class-rel-in-out: if class_out outputs (m) then class_in observed x Message: Message(f) eclass: EClass(A[eo; e]) event-ordering+: EO+(Info) Id: Id name: Name uall: [x:A]. B[x] prop: member: t ∈ T function: x:A ─→ B[x] product: x:A × B[x] universe: Type
Lemmas :  all_wf es-E_wf event-ordering+_subtype classrel_wf squash_wf exists_wf es-causle_wf eclass_wf3 subtype_rel_dep_function name_wf Id_wf Message_wf event-ordering+_wf

Latex:
\mforall{}[f:Name  {}\mrightarrow{}  Type].  \mforall{}[T:Type].  \mforall{}[es:EO+(Message(f))].  \mforall{}[m:Id  \mtimes{}  Message(f)].
\mforall{}[class$_{out}$:EClass(Id  \mtimes{}  Message(f))].  \mforall{}[x:T].  \mforall{}[class$_{in}\mbackslash{}\000Cff24:EClass(T)].
    (if  class$_{out}$  outputs  (m)  then  class$_{in}$  observed  x\000C  \mmember{}  \mBbbP{}')



Date html generated: 2015_07_21-PM-04_53_13
Last ObjectModification: 2015_01_28-AM-08_43_13

Home Index