Nuprl Lemma : decidable__ex_unit
∀[P:Unit ─→ ℙ]. (Dec(P[⋅]) ⇒ Dec(∃x:Unit. P[x]))
Proof
Definitions occuring in Statement : 
decidable: Dec(P), 
it: ⋅, 
uall: ∀[x:A]. B[x], 
prop: ℙ, 
so_apply: x[s], 
exists: ∃x:A. B[x], 
implies: P ⇒ Q, 
unit: Unit, 
function: x:A ─→ B[x]
Lemmas : 
decidable-exists-finite, 
finite-type-unit, 
decidable_wf, 
it_wf, 
unit_wf2
\mforall{}[P:Unit  {}\mrightarrow{}  \mBbbP{}].  (Dec(P[\mcdot{}])  {}\mRightarrow{}  Dec(\mexists{}x:Unit.  P[x]))
Date html generated:
2015_07_17-AM-09_05_13
Last ObjectModification:
2015_01_27-PM-00_54_32
Home
Index