Nuprl Lemma : finite-type-unit
finite-type(Unit)
Proof
Definitions occuring in Statement :
finite-type: finite-type(T)
,
unit: Unit
Definitions unfolded in proof :
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
iff: P
⇐⇒ Q
,
and: P ∧ Q
,
rev_implies: P
⇐ Q
,
implies: P
⇒ Q
,
exists: ∃x:A. B[x]
,
all: ∀x:A. B[x]
,
or: P ∨ Q
,
prop: ℙ
,
so_lambda: λ2x.t[x]
,
so_apply: x[s]
Lemmas referenced :
finite-type-iff-list,
unit_wf2,
cons_wf,
it_wf,
nil_wf,
cons_member,
equal-unit,
l_member_wf,
all_wf
Rules used in proof :
cut,
lemma_by_obid,
sqequalHypSubstitution,
sqequalSubstitution,
sqequalTransitivity,
computationStep,
sqequalReflexivity,
isectElimination,
thin,
hypothesis,
productElimination,
independent_functionElimination,
dependent_pairFormation,
lambdaFormation,
dependent_functionElimination,
hypothesisEquality,
inlFormation,
because_Cache,
sqequalRule,
lambdaEquality
Latex:
finite-type(Unit)
Date html generated:
2016_05_15-PM-04_26_55
Last ObjectModification:
2015_12_27-PM-02_51_08
Theory : general
Home
Index