Nuprl Lemma : finite-type-unit
finite-type(Unit)
Proof
Definitions occuring in Statement : 
finite-type: finite-type(T)
, 
unit: Unit
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
rev_implies: P 
⇐ Q
, 
implies: P 
⇒ Q
, 
exists: ∃x:A. B[x]
, 
all: ∀x:A. B[x]
, 
or: P ∨ Q
, 
prop: ℙ
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
Lemmas referenced : 
finite-type-iff-list, 
unit_wf2, 
cons_wf, 
it_wf, 
nil_wf, 
cons_member, 
equal-unit, 
l_member_wf, 
all_wf
Rules used in proof : 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isectElimination, 
thin, 
hypothesis, 
productElimination, 
independent_functionElimination, 
dependent_pairFormation, 
lambdaFormation, 
dependent_functionElimination, 
hypothesisEquality, 
inlFormation, 
because_Cache, 
sqequalRule, 
lambdaEquality
Latex:
finite-type(Unit)
Date html generated:
2016_05_15-PM-04_26_55
Last ObjectModification:
2015_12_27-PM-02_51_08
Theory : general
Home
Index