Nuprl Lemma : finite-type-unit

finite-type(Unit)


Proof




Definitions occuring in Statement :  finite-type: finite-type(T) unit: Unit
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q implies:  Q exists: x:A. B[x] all: x:A. B[x] or: P ∨ Q prop: so_lambda: λ2x.t[x] so_apply: x[s]
Lemmas referenced :  finite-type-iff-list unit_wf2 cons_wf it_wf nil_wf cons_member equal-unit l_member_wf all_wf
Rules used in proof :  cut lemma_by_obid sqequalHypSubstitution sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isectElimination thin hypothesis productElimination independent_functionElimination dependent_pairFormation lambdaFormation dependent_functionElimination hypothesisEquality inlFormation because_Cache sqequalRule lambdaEquality

Latex:
finite-type(Unit)



Date html generated: 2016_05_15-PM-04_26_55
Last ObjectModification: 2015_12_27-PM-02_51_08

Theory : general


Home Index