Nuprl Lemma : finite-type-iff-list
∀[T:Type]. (finite-type(T) ⇐⇒ ∃L:T List. ∀x:T. (x ∈ L))
Proof
Definitions occuring in Statement : 
finite-type: finite-type(T), 
l_member: (x ∈ l), 
list: T List, 
uall: ∀[x:A]. B[x], 
all: ∀x:A. B[x], 
exists: ∃x:A. B[x], 
iff: P ⇐⇒ Q, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
iff: P ⇐⇒ Q, 
and: P ∧ Q, 
implies: P ⇒ Q, 
member: t ∈ T, 
rev_implies: P ⇐ Q, 
exists: ∃x:A. B[x], 
prop: ℙ, 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
finite-type: finite-type(T), 
all: ∀x:A. B[x], 
cardinality-le: |T| ≤ n
Lemmas referenced : 
finite-type_wf, 
exists_wf, 
list_wf, 
all_wf, 
l_member_wf, 
cardinality-le-list, 
list-cardinality-le, 
length_wf_nat, 
cardinality-le_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
independent_pairFormation, 
lambdaFormation, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
productElimination, 
sqequalRule, 
lambdaEquality, 
universeEquality, 
dependent_functionElimination, 
independent_functionElimination, 
dependent_pairFormation
Latex:
\mforall{}[T:Type].  (finite-type(T)  \mLeftarrow{}{}\mRightarrow{}  \mexists{}L:T  List.  \mforall{}x:T.  (x  \mmember{}  L))
 Date html generated: 
2016_05_14-PM-01_52_08
 Last ObjectModification: 
2015_12_26-PM-05_38_03
Theory : list_1
Home
Index