Nuprl Lemma : finite-type-iff-list

[T:Type]. (finite-type(T) ⇐⇒ ∃L:T List. ∀x:T. (x ∈ L))


Proof




Definitions occuring in Statement :  finite-type: finite-type(T) l_member: (x ∈ l) list: List uall: [x:A]. B[x] all: x:A. B[x] exists: x:A. B[x] iff: ⇐⇒ Q universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] iff: ⇐⇒ Q and: P ∧ Q implies:  Q member: t ∈ T rev_implies:  Q exists: x:A. B[x] prop: so_lambda: λ2x.t[x] so_apply: x[s] finite-type: finite-type(T) all: x:A. B[x] cardinality-le: |T| ≤ n
Lemmas referenced :  finite-type_wf exists_wf list_wf all_wf l_member_wf cardinality-le-list list-cardinality-le length_wf_nat cardinality-le_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation independent_pairFormation lambdaFormation cut lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis productElimination sqequalRule lambdaEquality universeEquality dependent_functionElimination independent_functionElimination dependent_pairFormation

Latex:
\mforall{}[T:Type].  (finite-type(T)  \mLeftarrow{}{}\mRightarrow{}  \mexists{}L:T  List.  \mforall{}x:T.  (x  \mmember{}  L))



Date html generated: 2016_05_14-PM-01_52_08
Last ObjectModification: 2015_12_26-PM-05_38_03

Theory : list_1


Home Index