Nuprl Lemma : list-cardinality-le

[T:Type]. ∀L:T List. ((∀x:T. (x ∈ L))  |T| ≤ ||L||)


Proof




Definitions occuring in Statement :  cardinality-le: |T| ≤ n l_member: (x ∈ l) length: ||as|| list: List uall: [x:A]. B[x] all: x:A. B[x] implies:  Q universe: Type
Definitions unfolded in proof :  cardinality-le: |T| ≤ n uall: [x:A]. B[x] all: x:A. B[x] implies:  Q exists: x:A. B[x] member: t ∈ T int_seg: {i..j-} uimplies: supposing a guard: {T} lelt: i ≤ j < k and: P ∧ Q decidable: Dec(P) or: P ∨ Q satisfiable_int_formula: satisfiable_int_formula(fmla) false: False not: ¬A top: Top prop: less_than: a < b squash: T surject: Surj(A;B;f) so_lambda: λ2x.t[x] so_apply: x[s] l_member: (x ∈ l) nat: le: A ≤ B cand: c∧ B ge: i ≥ 
Lemmas referenced :  nat_properties equal_wf lelt_wf list_wf l_member_wf all_wf surject_wf int_seg_wf int_formula_prop_less_lemma intformless_wf decidable__lt int_formula_prop_wf int_term_value_var_lemma int_term_value_constant_lemma int_formula_prop_le_lemma int_formula_prop_not_lemma int_formula_prop_and_lemma itermVar_wf itermConstant_wf intformle_wf intformnot_wf intformand_wf satisfiable-full-omega-tt decidable__le length_wf int_seg_properties select_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep isect_memberFormation lambdaFormation dependent_pairFormation lambdaEquality cut lemma_by_obid sqequalHypSubstitution isectElimination thin cumulativity hypothesisEquality setElimination rename hypothesis independent_isectElimination natural_numberEquality productElimination dependent_functionElimination unionElimination int_eqEquality intEquality isect_memberEquality voidElimination voidEquality independent_pairFormation computeAll because_Cache imageElimination universeEquality dependent_set_memberEquality equalitySymmetry

Latex:
\mforall{}[T:Type].  \mforall{}L:T  List.  ((\mforall{}x:T.  (x  \mmember{}  L))  {}\mRightarrow{}  |T|  \mleq{}  ||L||)



Date html generated: 2016_05_14-PM-01_51_46
Last ObjectModification: 2016_01_15-AM-08_15_56

Theory : list_1


Home Index