Nuprl Lemma : cardinality-le-list
∀[T:Type]. ∀n:ℕ. (|T| ≤ n ⇒ (∃L:T List. ((||L|| = n ∈ ℤ) ∧ (∀x:T. (x ∈ L)))))
Proof
Definitions occuring in Statement : 
cardinality-le: |T| ≤ n, 
l_member: (x ∈ l), 
length: ||as||, 
list: T List, 
nat: ℕ, 
uall: ∀[x:A]. B[x], 
all: ∀x:A. B[x], 
exists: ∃x:A. B[x], 
implies: P ⇒ Q, 
and: P ∧ Q, 
int: ℤ, 
universe: Type, 
equal: s = t ∈ T
Definitions unfolded in proof : 
cardinality-le: |T| ≤ n, 
uall: ∀[x:A]. B[x], 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
exists: ∃x:A. B[x], 
member: t ∈ T, 
prop: ℙ, 
nat: ℕ, 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
and: P ∧ Q, 
cand: A c∧ B, 
top: Top, 
surject: Surj(A;B;f), 
l_member: (x ∈ l), 
subtype_rel: A ⊆r B, 
uimplies: b supposing a, 
le: A ≤ B, 
less_than': less_than'(a;b), 
false: False, 
not: ¬A, 
guard: {T}, 
int_seg: {i..j-}, 
ge: i ≥ j , 
lelt: i ≤ j < k, 
decidable: Dec(P), 
or: P ∨ Q, 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
squash: ↓T, 
true: True, 
iff: P ⇐⇒ Q, 
rev_implies: P ⇐ Q
Lemmas referenced : 
exists_wf, 
int_seg_wf, 
surject_wf, 
nat_wf, 
mklist_wf, 
mklist_length, 
equal_wf, 
length_wf, 
all_wf, 
l_member_wf, 
int_seg_subtype_nat, 
false_wf, 
int_seg_properties, 
nat_properties, 
decidable__lt, 
satisfiable-full-omega-tt, 
intformand_wf, 
intformnot_wf, 
intformless_wf, 
itermVar_wf, 
intformeq_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_less_lemma, 
int_term_value_var_lemma, 
int_formula_prop_eq_lemma, 
int_formula_prop_wf, 
less_than_wf, 
select_wf, 
decidable__le, 
intformle_wf, 
itermConstant_wf, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
squash_wf, 
true_wf, 
mklist_select, 
iff_weakening_equal
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
isect_memberFormation, 
lambdaFormation, 
sqequalHypSubstitution, 
productElimination, 
thin, 
cut, 
introduction, 
extract_by_obid, 
isectElimination, 
functionEquality, 
natural_numberEquality, 
setElimination, 
rename, 
hypothesisEquality, 
hypothesis, 
cumulativity, 
lambdaEquality, 
because_Cache, 
functionExtensionality, 
applyEquality, 
universeEquality, 
dependent_pairFormation, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
independent_pairFormation, 
productEquality, 
intEquality, 
dependent_functionElimination, 
equalityTransitivity, 
equalitySymmetry, 
independent_isectElimination, 
unionElimination, 
int_eqEquality, 
computeAll, 
imageElimination, 
imageMemberEquality, 
baseClosed, 
independent_functionElimination
Latex:
\mforall{}[T:Type].  \mforall{}n:\mBbbN{}.  (|T|  \mleq{}  n  {}\mRightarrow{}  (\mexists{}L:T  List.  ((||L||  =  n)  \mwedge{}  (\mforall{}x:T.  (x  \mmember{}  L)))))
Date html generated:
2017_04_17-AM-07_45_16
Last ObjectModification:
2017_02_27-PM-04_17_04
Theory : list_1
Home
Index