Nuprl Lemma : finite-type_wf
∀[T:Type]. (finite-type(T) ∈ Type)
Proof
Definitions occuring in Statement : 
finite-type: finite-type(T)
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
universe: Type
Definitions unfolded in proof : 
finite-type: finite-type(T)
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
so_lambda: λ2x.t[x]
, 
nat: ℕ
, 
so_apply: x[s]
, 
exists: ∃x:A. B[x]
, 
prop: ℙ
Lemmas referenced : 
exists_wf, 
nat_wf, 
int_seg_wf, 
surject_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
isect_memberFormation, 
introduction, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesis, 
lambdaEquality, 
functionEquality, 
natural_numberEquality, 
setElimination, 
rename, 
hypothesisEquality, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
universeEquality
Latex:
\mforall{}[T:Type].  (finite-type(T)  \mmember{}  Type)
Date html generated:
2016_05_14-PM-01_50_28
Last ObjectModification:
2015_12_26-PM-05_36_58
Theory : list_1
Home
Index