Nuprl Lemma : finite-type_wf

[T:Type]. (finite-type(T) ∈ Type)


Proof




Definitions occuring in Statement :  finite-type: finite-type(T) uall: [x:A]. B[x] member: t ∈ T universe: Type
Definitions unfolded in proof :  finite-type: finite-type(T) uall: [x:A]. B[x] member: t ∈ T so_lambda: λ2x.t[x] nat: so_apply: x[s] exists: x:A. B[x] prop:
Lemmas referenced :  exists_wf nat_wf int_seg_wf surject_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep isect_memberFormation introduction cut lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesis lambdaEquality functionEquality natural_numberEquality setElimination rename hypothesisEquality axiomEquality equalityTransitivity equalitySymmetry universeEquality

Latex:
\mforall{}[T:Type].  (finite-type(T)  \mmember{}  Type)



Date html generated: 2016_05_14-PM-01_50_28
Last ObjectModification: 2015_12_26-PM-05_36_58

Theory : list_1


Home Index