Nuprl Lemma : equal-unit
∀[x,y:Unit].  (x = y ∈ Unit)
Proof
Definitions occuring in Statement : 
uall: ∀[x:A]. B[x]
, 
unit: Unit
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
unit: Unit
, 
it: ⋅
Lemmas referenced : 
unit_wf, 
it_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalHypSubstitution, 
equalityElimination, 
lemma_by_obid, 
hypothesis, 
sqequalRule, 
isect_memberEquality, 
isectElimination, 
thin, 
hypothesisEquality, 
axiomEquality, 
because_Cache
Latex:
\mforall{}[x,y:Unit].    (x  =  y)
Date html generated:
2016_05_13-PM-03_16_13
Last ObjectModification:
2016_01_06-PM-05_20_53
Theory : core_2
Home
Index