Nuprl Lemma : decidable-exists-finite

[T:Type]. ∀[P:T ─→ ℙ].  ((∀x:T. Dec(P[x]))  finite-type(T)  Dec(∃x:T. P[x]))


Proof




Definitions occuring in Statement :  finite-type: finite-type(T) decidable: Dec(P) uall: [x:A]. B[x] prop: so_apply: x[s] all: x:A. B[x] exists: x:A. B[x] implies:  Q function: x:A ─→ B[x] universe: Type
Lemmas :  finite-type_wf all_wf decidable_wf exists_wf int_seg_wf iff_weakening_equal decidable_functionality decidable__exists_int_seg
\mforall{}[T:Type].  \mforall{}[P:T  {}\mrightarrow{}  \mBbbP{}].    ((\mforall{}x:T.  Dec(P[x]))  {}\mRightarrow{}  finite-type(T)  {}\mRightarrow{}  Dec(\mexists{}x:T.  P[x]))



Date html generated: 2015_07_17-AM-09_05_09
Last ObjectModification: 2015_02_04-PM-06_27_35

Home Index