Step
*
2
1
of Lemma
es-first-before
1. es : EO@i'
2. i : Id@i
3. [P] : {e:E| loc(e) = i ∈ Id} ─→ ℙ
4. ∀e@i.Dec(P[e])@i
5. WellFnd{i}(E;x,y.(x <loc y))
6. j : E@i
7. ∀k:E. ((k <loc j)
⇒ (loc(k) = i ∈ Id)
⇒ ∃e<k.P[e]
⇒ ∃e<k.e is first@ i s.t. e.P[e])@i
8. loc(j) = i ∈ Id@i
9. ∃e<j.P[e]@i
⊢ ∃e<j.e is first@ i s.t. e.P[e]
BY
{ Assert ¬↑first(j)⋅ }
1
.....assertion.....
1. es : EO@i'
2. i : Id@i
3. [P] : {e:E| loc(e) = i ∈ Id} ─→ ℙ
4. ∀e@i.Dec(P[e])@i
5. WellFnd{i}(E;x,y.(x <loc y))
6. j : E@i
7. ∀k:E. ((k <loc j)
⇒ (loc(k) = i ∈ Id)
⇒ ∃e<k.P[e]
⇒ ∃e<k.e is first@ i s.t. e.P[e])@i
8. loc(j) = i ∈ Id@i
9. ∃e<j.P[e]@i
⊢ ¬↑first(j)
2
1. es : EO@i'
2. i : Id@i
3. [P] : {e:E| loc(e) = i ∈ Id} ─→ ℙ
4. ∀e@i.Dec(P[e])@i
5. WellFnd{i}(E;x,y.(x <loc y))
6. j : E@i
7. ∀k:E. ((k <loc j)
⇒ (loc(k) = i ∈ Id)
⇒ ∃e<k.P[e]
⇒ ∃e<k.e is first@ i s.t. e.P[e])@i
8. loc(j) = i ∈ Id@i
9. ∃e<j.P[e]@i
10. ¬↑first(j)
⊢ ∃e<j.e is first@ i s.t. e.P[e]
Latex:
1. es : EO@i'
2. i : Id@i
3. [P] : \{e:E| loc(e) = i\} {}\mrightarrow{} \mBbbP{}
4. \mforall{}e@i.Dec(P[e])@i
5. WellFnd\{i\}(E;x,y.(x <loc y))
6. j : E@i
7. \mforall{}k:E. ((k <loc j) {}\mRightarrow{} (loc(k) = i) {}\mRightarrow{} \mexists{}e<k.P[e] {}\mRightarrow{} \mexists{}e<k.e is first@ i s.t. e.P[e])@i
8. loc(j) = i@i
9. \mexists{}e<j.P[e]@i
\mvdash{} \mexists{}e<j.e is first@ i s.t. e.P[e]
By
Assert \mneg{}\muparrow{}first(j)\mcdot{}
Home
Index