Step
*
of Lemma
es-loc-pred-plus
∀[es:EO]. ∀[x,y:E]. loc(x) = loc(y) ∈ Id supposing x λx,y. ((¬↑first(y)) c∧ (x = pred(y) ∈ E))+ y
BY
{ ((D 0 THENA Auto)
THEN RepUR ``infix_ap rel_plus`` 0
THEN (Assert ⌈∀n:ℕ. ∀x,y:E. ((λx,y. ((¬↑first(y)) c∧ (x = pred(y) ∈ E))^n x y)
⇒ (loc(x) = loc(y) ∈ Id))⌉ BY
(CompleteInductionOnNat
THEN RepeatFor 2 ((D 0 THENA Auto))
THEN RecUnfold `rel_exp` 0
THEN Reduce 0
THEN AutoSplit
THEN Auto
THEN ExRepD
THEN FHyp 3 [-1]
THEN Auto
THEN RWO "-3 -1<" 0
THEN Auto))) }
1
1. es : EO
2. ∀n:ℕ. ∀x,y:E. ((λx,y. ((¬↑first(y)) c∧ (x = pred(y) ∈ E))^n x y)
⇒ (loc(x) = loc(y) ∈ Id))
⊢ ∀[x,y:E]. loc(x) = loc(y) ∈ Id supposing ∃n:ℕ+. (λx,y. ((¬↑first(y)) c∧ (x = pred(y) ∈ E))^n x y)
Latex:
\mforall{}[es:EO]. \mforall{}[x,y:E]. loc(x) = loc(y) supposing x \mlambda{}x,y. ((\mneg{}\muparrow{}first(y)) c\mwedge{} (x = pred(y)))\msupplus{} y
By
((D 0 THENA Auto)
THEN RepUR ``infix\_ap rel\_plus`` 0
THEN (Assert \mkleeneopen{}\mforall{}n:\mBbbN{}. \mforall{}x,y:E. ((\mlambda{}x,y. ((\mneg{}\muparrow{}first(y)) c\mwedge{} (x = pred(y)))\^{}n x y) {}\mRightarrow{} (loc(x) = loc(y)))\mkleeneclose{} \000CBY
(CompleteInductionOnNat
THEN RepeatFor 2 ((D 0 THENA Auto))
THEN RecUnfold `rel\_exp` 0
THEN Reduce 0
THEN AutoSplit
THEN Auto
THEN ExRepD
THEN FHyp 3 [-1]
THEN Auto
THEN RWO "-3 -1<" 0
THEN Auto)))
Home
Index