Nuprl Lemma : es-loc-pred-plus
∀[es:EO]. ∀[x,y:E].  loc(x) = loc(y) ∈ Id supposing x λx,y. ((¬↑first(y)) c∧ (x = pred(y) ∈ E))+ y
Proof
Definitions occuring in Statement : 
es-first: first(e)
, 
es-pred: pred(e)
, 
es-loc: loc(e)
, 
es-E: E
, 
event_ordering: EO
, 
rel_plus: R+
, 
Id: Id
, 
assert: ↑b
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
cand: A c∧ B
, 
infix_ap: x f y
, 
not: ¬A
, 
lambda: λx.A[x]
, 
equal: s = t ∈ T
Lemmas : 
nat_properties, 
less_than_transitivity1, 
less_than_irreflexivity, 
ge_wf, 
less_than_wf, 
rel_exp_wf, 
es-E_wf, 
not_wf, 
assert_wf, 
es-first_wf, 
es-pred_wf, 
int_seg_wf, 
int_seg_subtype-nat, 
decidable__le, 
subtract_wf, 
false_wf, 
not-ge-2, 
less-iff-le, 
condition-implies-le, 
minus-one-mul, 
zero-add, 
minus-add, 
minus-minus, 
add-associates, 
add-swap, 
add-commutes, 
add_functionality_wrt_le, 
add-zero, 
le-add-cancel, 
decidable__equal_int, 
subtype_rel-int_seg, 
le_weakening, 
int_seg_properties, 
le_wf, 
eq_int_wf, 
bool_wf, 
eqtt_to_assert, 
assert_of_eq_int, 
and_wf, 
equal_wf, 
es-loc_wf, 
eqff_to_assert, 
bool_cases_sqequal, 
subtype_base_sq, 
bool_subtype_base, 
assert-bnot, 
neg_assert_of_eq_int, 
int_upper_subtype_nat, 
nequal-le-implies, 
not-le-2, 
sq_stable__le, 
subtract-is-less, 
lelt_wf, 
Id_wf, 
iff_weakening_equal, 
es-pred-loc-base, 
decidable__lt, 
not-equal-2, 
le-add-cancel-alt, 
add-mul-special, 
zero-mul, 
nat_wf, 
infix_ap_wf, 
rel_plus_wf, 
event_ordering_wf, 
exists_wf, 
nat_plus_wf, 
nat_plus_subtype_nat
\mforall{}[es:EO].  \mforall{}[x,y:E].    loc(x)  =  loc(y)  supposing  x  \mlambda{}x,y.  ((\mneg{}\muparrow{}first(y))  c\mwedge{}  (x  =  pred(y)))\msupplus{}  y
Date html generated:
2015_07_17-AM-08_36_05
Last ObjectModification:
2015_02_04-AM-07_07_36
Home
Index