Nuprl Lemma : es-loc-pred-plus

[es:EO]. ∀[x,y:E].  loc(x) loc(y) ∈ Id supposing x λx,y. ((¬↑first(y)) c∧ (x pred(y) ∈ E))+ y


Proof




Definitions occuring in Statement :  es-first: first(e) es-pred: pred(e) es-loc: loc(e) es-E: E event_ordering: EO rel_plus: R+ Id: Id assert: b uimplies: supposing a uall: [x:A]. B[x] cand: c∧ B infix_ap: y not: ¬A lambda: λx.A[x] equal: t ∈ T
Lemmas :  nat_properties less_than_transitivity1 less_than_irreflexivity ge_wf less_than_wf rel_exp_wf es-E_wf not_wf assert_wf es-first_wf es-pred_wf int_seg_wf int_seg_subtype-nat decidable__le subtract_wf false_wf not-ge-2 less-iff-le condition-implies-le minus-one-mul zero-add minus-add minus-minus add-associates add-swap add-commutes add_functionality_wrt_le add-zero le-add-cancel decidable__equal_int subtype_rel-int_seg le_weakening int_seg_properties le_wf eq_int_wf bool_wf eqtt_to_assert assert_of_eq_int and_wf equal_wf es-loc_wf eqff_to_assert bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot neg_assert_of_eq_int int_upper_subtype_nat nequal-le-implies not-le-2 sq_stable__le subtract-is-less lelt_wf Id_wf iff_weakening_equal es-pred-loc-base decidable__lt not-equal-2 le-add-cancel-alt add-mul-special zero-mul nat_wf infix_ap_wf rel_plus_wf event_ordering_wf exists_wf nat_plus_wf nat_plus_subtype_nat
\mforall{}[es:EO].  \mforall{}[x,y:E].    loc(x)  =  loc(y)  supposing  x  \mlambda{}x,y.  ((\mneg{}\muparrow{}first(y))  c\mwedge{}  (x  =  pred(y)))\msupplus{}  y



Date html generated: 2015_07_17-AM-08_36_05
Last ObjectModification: 2015_02_04-AM-07_07_36

Home Index