Nuprl Lemma : rel_exp_wf

[n:ℕ]. ∀[T:Type]. ∀[R:T ⟶ T ⟶ ℙ].  (R^n ∈ T ⟶ T ⟶ ℙ)


Proof




Definitions occuring in Statement :  rel_exp: R^n nat: uall: [x:A]. B[x] prop: member: t ∈ T function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T nat: implies:  Q false: False ge: i ≥  guard: {T} uimplies: supposing a prop: rel_exp: R^n eq_int: (i =z j) subtract: m ifthenelse: if then else fi  btrue: tt all: x:A. B[x] decidable: Dec(P) or: P ∨ Q iff: ⇐⇒ Q and: P ∧ Q not: ¬A rev_implies:  Q uiff: uiff(P;Q) subtype_rel: A ⊆B top: Top le: A ≤ B less_than': less_than'(a;b) true: True bool: 𝔹 unit: Unit it: bfalse: ff exists: x:A. B[x] sq_type: SQType(T) bnot: ¬bb assert: b so_lambda: λ2x.t[x] so_apply: x[s]
Lemmas referenced :  nat_properties less_than_transitivity1 less_than_irreflexivity ge_wf less_than_wf equal_wf decidable__le subtract_wf false_wf not-ge-2 less-iff-le condition-implies-le minus-one-mul zero-add minus-one-mul-top minus-add minus-minus add-associates add-swap add-commutes add_functionality_wrt_le add-zero le-add-cancel eq_int_wf bool_wf eqtt_to_assert assert_of_eq_int eqff_to_assert bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot neg_assert_of_eq_int exists_wf infix_ap_wf subtype_rel_self nat_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :isect_memberFormation_alt,  introduction cut extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis setElimination rename sqequalRule intWeakElimination lambdaFormation natural_numberEquality independent_isectElimination independent_functionElimination voidElimination lambdaEquality dependent_functionElimination isect_memberEquality axiomEquality equalityTransitivity equalitySymmetry functionEquality cumulativity universeEquality Error :functionIsType,  Error :universeIsType,  Error :inhabitedIsType,  unionElimination independent_pairFormation productElimination addEquality applyEquality voidEquality intEquality minusEquality because_Cache equalityElimination dependent_pairFormation promote_hyp instantiate productEquality functionExtensionality

Latex:
\mforall{}[n:\mBbbN{}].  \mforall{}[T:Type].  \mforall{}[R:T  {}\mrightarrow{}  T  {}\mrightarrow{}  \mBbbP{}].    (rel\_exp(T;  R;  n)  \mmember{}  T  {}\mrightarrow{}  T  {}\mrightarrow{}  \mBbbP{})



Date html generated: 2019_06_20-PM-00_30_19
Last ObjectModification: 2018_09_26-PM-00_39_26

Theory : relations


Home Index