Nuprl Lemma : rel_exp_wf
∀[n:ℕ]. ∀[T:Type]. ∀[R:T ⟶ T ⟶ ℙ]. (R^n ∈ T ⟶ T ⟶ ℙ)
Proof
Definitions occuring in Statement :
rel_exp: R^n
,
nat: ℕ
,
uall: ∀[x:A]. B[x]
,
prop: ℙ
,
member: t ∈ T
,
function: x:A ⟶ B[x]
,
universe: Type
Definitions unfolded in proof :
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
nat: ℕ
,
implies: P
⇒ Q
,
false: False
,
ge: i ≥ j
,
guard: {T}
,
uimplies: b supposing a
,
prop: ℙ
,
rel_exp: R^n
,
eq_int: (i =z j)
,
subtract: n - m
,
ifthenelse: if b then t else f fi
,
btrue: tt
,
all: ∀x:A. B[x]
,
decidable: Dec(P)
,
or: P ∨ Q
,
iff: P
⇐⇒ Q
,
and: P ∧ Q
,
not: ¬A
,
rev_implies: P
⇐ Q
,
uiff: uiff(P;Q)
,
subtype_rel: A ⊆r B
,
top: Top
,
le: A ≤ B
,
less_than': less_than'(a;b)
,
true: True
,
bool: 𝔹
,
unit: Unit
,
it: ⋅
,
bfalse: ff
,
exists: ∃x:A. B[x]
,
sq_type: SQType(T)
,
bnot: ¬bb
,
assert: ↑b
,
so_lambda: λ2x.t[x]
,
so_apply: x[s]
Lemmas referenced :
nat_properties,
less_than_transitivity1,
less_than_irreflexivity,
ge_wf,
less_than_wf,
equal_wf,
decidable__le,
subtract_wf,
false_wf,
not-ge-2,
less-iff-le,
condition-implies-le,
minus-one-mul,
zero-add,
minus-one-mul-top,
minus-add,
minus-minus,
add-associates,
add-swap,
add-commutes,
add_functionality_wrt_le,
add-zero,
le-add-cancel,
eq_int_wf,
bool_wf,
eqtt_to_assert,
assert_of_eq_int,
eqff_to_assert,
bool_cases_sqequal,
subtype_base_sq,
bool_subtype_base,
assert-bnot,
neg_assert_of_eq_int,
exists_wf,
infix_ap_wf,
subtype_rel_self,
nat_wf
Rules used in proof :
sqequalSubstitution,
sqequalTransitivity,
computationStep,
sqequalReflexivity,
Error :isect_memberFormation_alt,
introduction,
cut,
extract_by_obid,
sqequalHypSubstitution,
isectElimination,
thin,
hypothesisEquality,
hypothesis,
setElimination,
rename,
sqequalRule,
intWeakElimination,
lambdaFormation,
natural_numberEquality,
independent_isectElimination,
independent_functionElimination,
voidElimination,
lambdaEquality,
dependent_functionElimination,
isect_memberEquality,
axiomEquality,
equalityTransitivity,
equalitySymmetry,
functionEquality,
cumulativity,
universeEquality,
Error :functionIsType,
Error :universeIsType,
Error :inhabitedIsType,
unionElimination,
independent_pairFormation,
productElimination,
addEquality,
applyEquality,
voidEquality,
intEquality,
minusEquality,
because_Cache,
equalityElimination,
dependent_pairFormation,
promote_hyp,
instantiate,
productEquality,
functionExtensionality
Latex:
\mforall{}[n:\mBbbN{}]. \mforall{}[T:Type]. \mforall{}[R:T {}\mrightarrow{} T {}\mrightarrow{} \mBbbP{}]. (rel\_exp(T; R; n) \mmember{} T {}\mrightarrow{} T {}\mrightarrow{} \mBbbP{})
Date html generated:
2019_06_20-PM-00_30_19
Last ObjectModification:
2018_09_26-PM-00_39_26
Theory : relations
Home
Index