Nuprl Lemma : rel_plus_wf
∀[T:Type]. ∀[R:T ⟶ T ⟶ Type].  (R+ ∈ T ⟶ T ⟶ Type)
Proof
Definitions occuring in Statement : 
rel_plus: R+
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
rel_plus: R+
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
so_lambda: λ2x.t[x]
, 
infix_ap: x f y
, 
subtype_rel: A ⊆r B
, 
prop: ℙ
, 
so_apply: x[s]
, 
exists: ∃x:A. B[x]
Lemmas referenced : 
exists_wf, 
nat_plus_wf, 
rel_exp_wf, 
nat_plus_subtype_nat
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
isect_memberFormation, 
introduction, 
cut, 
lambdaEquality, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesis, 
applyEquality, 
hypothesisEquality, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
functionEquality, 
cumulativity, 
universeEquality, 
isect_memberEquality, 
because_Cache
Latex:
\mforall{}[T:Type].  \mforall{}[R:T  {}\mrightarrow{}  T  {}\mrightarrow{}  Type].    (R\msupplus{}  \mmember{}  T  {}\mrightarrow{}  T  {}\mrightarrow{}  Type)
Date html generated:
2016_05_14-PM-03_51_27
Last ObjectModification:
2015_12_26-PM-06_57_30
Theory : relations2
Home
Index