Nuprl Lemma : rel_plus_wf

[T:Type]. ∀[R:T ⟶ T ⟶ Type].  (R+ ∈ T ⟶ T ⟶ Type)


Proof




Definitions occuring in Statement :  rel_plus: R+ uall: [x:A]. B[x] member: t ∈ T function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  rel_plus: R+ uall: [x:A]. B[x] member: t ∈ T so_lambda: λ2x.t[x] infix_ap: y subtype_rel: A ⊆B prop: so_apply: x[s] exists: x:A. B[x]
Lemmas referenced :  exists_wf nat_plus_wf rel_exp_wf nat_plus_subtype_nat
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep isect_memberFormation introduction cut lambdaEquality lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesis applyEquality hypothesisEquality axiomEquality equalityTransitivity equalitySymmetry functionEquality cumulativity universeEquality isect_memberEquality because_Cache

Latex:
\mforall{}[T:Type].  \mforall{}[R:T  {}\mrightarrow{}  T  {}\mrightarrow{}  Type].    (R\msupplus{}  \mmember{}  T  {}\mrightarrow{}  T  {}\mrightarrow{}  Type)



Date html generated: 2016_05_14-PM-03_51_27
Last ObjectModification: 2015_12_26-PM-06_57_30

Theory : relations2


Home Index