Nuprl Lemma : subtract-is-less

[x,y:ℤ].  uiff(x y < x;0 < y)


Proof




Definitions occuring in Statement :  less_than: a < b uiff: uiff(P;Q) uall: [x:A]. B[x] subtract: m natural_number: $n int:
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a prop: all: x:A. B[x] top: Top subtract: m subtype_rel: A ⊆B
Lemmas referenced :  less_than_wf subtract_wf member-less_than add_functionality_wrt_lt le_reflexive add-associates minus-one-mul add-swap add-mul-special add-commutes zero-mul zero-add minus-one-mul-top add-zero
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut independent_pairFormation hypothesis lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality natural_numberEquality sqequalRule productElimination independent_pairEquality isect_memberEquality independent_isectElimination because_Cache equalityTransitivity equalitySymmetry intEquality dependent_functionElimination voidElimination voidEquality multiplyEquality minusEquality addEquality applyEquality lambdaEquality

Latex:
\mforall{}[x,y:\mBbbZ{}].    uiff(x  -  y  <  x;0  <  y)



Date html generated: 2016_05_13-PM-03_31_38
Last ObjectModification: 2015_12_26-AM-09_45_49

Theory : arithmetic


Home Index