Step
*
of Lemma
es-pred-wf-base
∀[es:EO]. ∀[e:es-base-E(es)]. (pred(e) ∈ es-base-E(es))
BY
{ (Auto
THEN MoveToConcl (-1)
THEN ((InstLemma `es-causl-wf-base` [⌈es⌉]⋅ THENA Auto) THEN (InstLemma `es-eq-wf-base` [⌈es⌉]⋅ THENA Auto))
THEN StrongCausalIndAux (ioid Obid: es-causl-swellfnd-base)⋅
THEN RecUnfold `es-pred` 0
THEN Unfold `let` 0
THEN Reduce 0
THEN RepeatFor 2 (AutoSplit)
THEN BHyp (-1)
THEN Auto) }
1
1. es : EO
2. ∀[e,e':es-base-E(es)]. ((e < e') ∈ ℙ)
3. es-eq(es) ∈ EqDecider(es-base-E(es))
4. e : es-base-E(es)@i
5. ¬↑(es-eq(es) pred1(e) e)
6. ¬↑(es-dom(es) pred1(e))
7. ∀e1:es-base-E(es). ((e1 < e)
⇒ (pred(e1) ∈ es-base-E(es)))
⊢ (pred1(e) < e)
Latex:
\mforall{}[es:EO]. \mforall{}[e:es-base-E(es)]. (pred(e) \mmember{} es-base-E(es))
By
(Auto
THEN MoveToConcl (-1)
THEN ((InstLemma `es-causl-wf-base` [\mkleeneopen{}es\mkleeneclose{}]\mcdot{} THENA Auto)
THEN (InstLemma `es-eq-wf-base` [\mkleeneopen{}es\mkleeneclose{}]\mcdot{} THENA Auto)
)
THEN StrongCausalIndAux (ioid Obid: es-causl-swellfnd-base)\mcdot{}
THEN RecUnfold `es-pred` 0
THEN Unfold `let` 0
THEN Reduce 0
THEN RepeatFor 2 (AutoSplit)
THEN BHyp (-1)
THEN Auto)
Home
Index