Step
*
5
1
of Lemma
pes-axioms
1. the_es : EO@i'
2. e : E@i
3. ¬↑first(e)
4. loc(pred(e)) = loc(e) ∈ Id
5. (pred(e) < e)
6. ∀e':E. (e' < e)
⇒ ((e' = pred(e) ∈ E) ∨ (e' < pred(e))) supposing loc(e') = loc(e) ∈ Id
7. (pred(e) <loc e)
8. e' : E@i
9. (pred(e) <loc e')@i
10. (e' <loc e)@i
⊢ False
BY
{ (Assert (e' <loc e') BY
(InstHyp [⌈e'⌉] (-5)⋅ THEN Auto)) }
1
1. the_es : EO@i'
2. e : E@i
3. ¬↑first(e)
4. loc(pred(e)) = loc(e) ∈ Id
5. (pred(e) < e)
6. ∀e':E. (e' < e)
⇒ ((e' = pred(e) ∈ E) ∨ (e' < pred(e))) supposing loc(e') = loc(e) ∈ Id
7. (pred(e) <loc e)
8. e' : E@i
9. (pred(e) <loc e')@i
10. (e' <loc e)@i
11. (e' = pred(e) ∈ E) ∨ (e' < pred(e))
⊢ (e' <loc e')
2
1. the_es : EO@i'
2. e : E@i
3. ¬↑first(e)
4. loc(pred(e)) = loc(e) ∈ Id
5. (pred(e) < e)
6. ∀e':E. (e' < e)
⇒ ((e' = pred(e) ∈ E) ∨ (e' < pred(e))) supposing loc(e') = loc(e) ∈ Id
7. (pred(e) <loc e)
8. e' : E@i
9. (pred(e) <loc e')@i
10. (e' <loc e)@i
11. (e' <loc e')
⊢ False
Latex:
1. the$_{es}$ : EO@i'
2. e : E@i
3. \mneg{}\muparrow{}first(e)
4. loc(pred(e)) = loc(e)
5. (pred(e) < e)
6. \mforall{}e':E. (e' < e) {}\mRightarrow{} ((e' = pred(e)) \mvee{} (e' < pred(e))) supposing loc(e') = loc(e)
7. (pred(e) <loc e)
8. e' : E@i
9. (pred(e) <loc e')@i
10. (e' <loc e)@i
\mvdash{} False
By
(Assert (e' <loc e') BY
(InstHyp [\mkleeneopen{}e'\mkleeneclose{}] (-5)\mcdot{} THEN Auto))
Home
Index