Step
*
of Lemma
st-lookup-distinct
∀[T:Id ─→ Type]. ∀[tab:secret-table(T)].
∀[x:Atom1]. ∀[n:ℕ||tab|| ].
((↑isl(st-lookup(tab;x)))
c∧ (outl(st-lookup(tab;x)) = <key(tab;n), data(tab;n)> ∈ (ℕ + Atom1 × data(T)))) supposing
((st-atom(tab;n) = x ∈ Atom1) and
(n ≤ ptr(tab)))
supposing atoms-distinct(tab)
BY
{ Auto }
1
1. T : Id ─→ Type
2. tab : secret-table(T)
3. atoms-distinct(tab)
4. x : Atom1
5. n : ℕ||tab||
6. n ≤ ptr(tab)
7. st-atom(tab;n) = x ∈ Atom1
⊢ ↑isl(st-lookup(tab;x))
2
1. T : Id ─→ Type
2. tab : secret-table(T)
3. atoms-distinct(tab)
4. x : Atom1
5. n : ℕ||tab||
6. n ≤ ptr(tab)
7. st-atom(tab;n) = x ∈ Atom1
8. ↑isl(st-lookup(tab;x))
⊢ outl(st-lookup(tab;x)) = <key(tab;n), data(tab;n)> ∈ (ℕ + Atom1 × data(T))
Latex:
\mforall{}[T:Id {}\mrightarrow{} Type]. \mforall{}[tab:secret-table(T)].
\mforall{}[x:Atom1]. \mforall{}[n:\mBbbN{}||tab|| ].
((\muparrow{}isl(st-lookup(tab;x))) c\mwedge{} (outl(st-lookup(tab;x)) = <key(tab;n), data(tab;n)>)) supposing
((st-atom(tab;n) = x) and
(n \mleq{} ptr(tab)))
supposing atoms-distinct(tab)
By
Auto
Home
Index