Nuprl Lemma : st-lookup-distinct

[T:Id ─→ Type]. ∀[tab:secret-table(T)].
  ∀[x:Atom1]. ∀[n:ℕ||tab|| ].
    ((↑isl(st-lookup(tab;x)))
       c∧ (outl(st-lookup(tab;x)) = <key(tab;n), data(tab;n)> ∈ (ℕ Atom1 × data(T)))) supposing 
       ((st-atom(tab;n) x ∈ Atom1) and 
       (n ≤ ptr(tab))) 
  supposing atoms-distinct(tab)


Proof




Definitions occuring in Statement :  st-atoms-distinct: atoms-distinct(tab) st-lookup: st-lookup(tab;x) st-data: data(tab;n) st-key: key(tab;n) st-atom: st-atom(tab;n) st-ptr: ptr(tab) st-length: ||tab||  secret-table: secret-table(T) data: data(T) Id: Id int_seg: {i..j-} nat: atom: Atom$n outl: outl(x) assert: b isl: isl(x) uimplies: supposing a uall: [x:A]. B[x] cand: c∧ B le: A ≤ B function: x:A ─→ B[x] pair: <a, b> product: x:A × B[x] union: left right natural_number: $n universe: Type equal: t ∈ T
Lemmas :  assert_witness isl_wf nat_wf data_wf unit_wf2 st-lookup_wf equal-wf-T-base st-atom_wf atom1_subtype_base le_wf st-ptr_wf int_seg_wf st-length_wf st-atoms-distinct_wf secret-table_wf Id_wf st-lookup-property st-lookup-outl subtype_base_sq int_subtype_base
\mforall{}[T:Id  {}\mrightarrow{}  Type].  \mforall{}[tab:secret-table(T)].
    \mforall{}[x:Atom1].  \mforall{}[n:\mBbbN{}||tab||  ].
        ((\muparrow{}isl(st-lookup(tab;x)))  c\mwedge{}  (outl(st-lookup(tab;x))  =  <key(tab;n),  data(tab;n)>))  supposing 
              ((st-atom(tab;n)  =  x)  and 
              (n  \mleq{}  ptr(tab))) 
    supposing  atoms-distinct(tab)



Date html generated: 2015_07_17-AM-08_57_09
Last ObjectModification: 2015_01_27-PM-01_03_18

Home Index