Nuprl Lemma : st-lookup-property
∀[T:Id ─→ Type]
  ∀tab:secret-table(T). ∀x:Atom1.
    (↑isl(st-lookup(tab;x)) 
⇐⇒ ∃n:ℕ||tab|| . ((n ≤ ptr(tab)) ∧ (st-atom(tab;n) = x ∈ Atom1)))
Proof
Definitions occuring in Statement : 
st-lookup: st-lookup(tab;x)
, 
st-atom: st-atom(tab;n)
, 
st-ptr: ptr(tab)
, 
st-length: ||tab|| 
, 
secret-table: secret-table(T)
, 
Id: Id
, 
int_seg: {i..j-}
, 
atom: Atom$n
, 
assert: ↑b
, 
isl: isl(x)
, 
uall: ∀[x:A]. B[x]
, 
le: A ≤ B
, 
all: ∀x:A. B[x]
, 
exists: ∃x:A. B[x]
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
function: x:A ─→ B[x]
, 
natural_number: $n
, 
universe: Type
, 
equal: s = t ∈ T
Lemmas : 
nat_wf, 
secret-table_wf, 
Id_wf, 
mu_wf, 
le_int_wf, 
bool_wf, 
uiff_transitivity, 
equal-wf-T-base, 
assert_wf, 
le_wf, 
eqtt_to_assert, 
assert_of_le_int, 
bor_wf, 
lt_int_wf, 
btrue_wf, 
less_than_wf, 
bnot_wf, 
eqff_to_assert, 
assert_functionality_wrt_uiff, 
bnot_of_le_int, 
assert_of_lt_int, 
eq_atom_wf1, 
lelt_wf, 
data_wf, 
iff_transitivity, 
or_wf, 
true_wf, 
iff_weakening_uiff, 
assert_of_bor, 
less_than_irreflexivity, 
mu-property, 
subtype_base_sq, 
set_subtype_base, 
int_subtype_base, 
false_wf, 
exists_wf, 
int_seg_wf, 
atom1_subtype_base, 
bnot_thru_bor, 
band_wf, 
squash_wf, 
bnot_of_lt_int, 
assert_of_band, 
int_seg_subtype-nat, 
assert_of_eq_atom1, 
less_than_transitivity1, 
equal_wf, 
bool_cases_sqequal, 
bool_subtype_base, 
assert-bnot, 
neg_assert_of_eq_atom1
\mforall{}[T:Id  {}\mrightarrow{}  Type]
    \mforall{}tab:secret-table(T).  \mforall{}x:Atom1.
        (\muparrow{}isl(st-lookup(tab;x))  \mLeftarrow{}{}\mRightarrow{}  \mexists{}n:\mBbbN{}||tab||  .  ((n  \mleq{}  ptr(tab))  \mwedge{}  (st-atom(tab;n)  =  x)))
Date html generated:
2015_07_17-AM-08_56_53
Last ObjectModification:
2015_01_27-PM-01_05_07
Home
Index