Nuprl Lemma : st-lookup-property

[T:Id ─→ Type]
  ∀tab:secret-table(T). ∀x:Atom1.
    (↑isl(st-lookup(tab;x)) ⇐⇒ ∃n:ℕ||tab|| ((n ≤ ptr(tab)) ∧ (st-atom(tab;n) x ∈ Atom1)))


Proof




Definitions occuring in Statement :  st-lookup: st-lookup(tab;x) st-atom: st-atom(tab;n) st-ptr: ptr(tab) st-length: ||tab||  secret-table: secret-table(T) Id: Id int_seg: {i..j-} atom: Atom$n assert: b isl: isl(x) uall: [x:A]. B[x] le: A ≤ B all: x:A. B[x] exists: x:A. B[x] iff: ⇐⇒ Q and: P ∧ Q function: x:A ─→ B[x] natural_number: $n universe: Type equal: t ∈ T
Lemmas :  nat_wf secret-table_wf Id_wf mu_wf le_int_wf bool_wf uiff_transitivity equal-wf-T-base assert_wf le_wf eqtt_to_assert assert_of_le_int bor_wf lt_int_wf btrue_wf less_than_wf bnot_wf eqff_to_assert assert_functionality_wrt_uiff bnot_of_le_int assert_of_lt_int eq_atom_wf1 lelt_wf data_wf iff_transitivity or_wf true_wf iff_weakening_uiff assert_of_bor less_than_irreflexivity mu-property subtype_base_sq set_subtype_base int_subtype_base false_wf exists_wf int_seg_wf atom1_subtype_base bnot_thru_bor band_wf squash_wf bnot_of_lt_int assert_of_band int_seg_subtype-nat assert_of_eq_atom1 less_than_transitivity1 equal_wf bool_cases_sqequal bool_subtype_base assert-bnot neg_assert_of_eq_atom1
\mforall{}[T:Id  {}\mrightarrow{}  Type]
    \mforall{}tab:secret-table(T).  \mforall{}x:Atom1.
        (\muparrow{}isl(st-lookup(tab;x))  \mLeftarrow{}{}\mRightarrow{}  \mexists{}n:\mBbbN{}||tab||  .  ((n  \mleq{}  ptr(tab))  \mwedge{}  (st-atom(tab;n)  =  x)))



Date html generated: 2015_07_17-AM-08_56_53
Last ObjectModification: 2015_01_27-PM-01_05_07

Home Index