Nuprl Lemma : assert_of_eq_atom1

[x,y:Atom1].  uiff(↑=a1 y;x y ∈ Atom1)


Proof




Definitions occuring in Statement :  eq_atom: eq_atom$n(x;y) atom: Atom$n assert: b uiff: uiff(P;Q) uall: [x:A]. B[x] equal: t ∈ T
Definitions unfolded in proof :  btrue: tt not: ¬A eq_atom: eq_atom$n(x;y) bfalse: ff or: P ∨ Q decidable: Dec(P) subtype_rel: A ⊆B false: False true: True bool: 𝔹 implies:  Q all: x:A. B[x] ifthenelse: if then else fi  assert: b prop: uimplies: supposing a and: P ∧ Q uiff: uiff(P;Q) member: t ∈ T uall: [x:A]. B[x]
Lemmas referenced :  decidable__atom_equal_1 atom1_subtype_base equal-wf-base equal_wf false_wf true_wf bool_wf eq_atom_wf1 assert_wf
Rules used in proof :  atomn_eqReduceTrueSq natural_numberEquality atomn_eqReduceFalseSq because_Cache isect_memberEquality independent_pairEquality productElimination applyEquality atomnEquality independent_functionElimination dependent_functionElimination voidElimination equalitySymmetry equalityTransitivity axiomEquality unionElimination lambdaFormation sqequalRule hypothesisEquality thin isectElimination sqequalHypSubstitution extract_by_obid hypothesis independent_pairFormation cut introduction isect_memberFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}[x,y:Atom1].    uiff(\muparrow{}x  =a1  y;x  =  y)



Date html generated: 2018_07_25-PM-01_27_27
Last ObjectModification: 2018_07_18-PM-00_17_25

Theory : atom_1


Home Index