Nuprl Lemma : eq_atom_wf1
∀[x,y:Atom1].  (x =a1 y ∈ 𝔹)
Proof
Definitions occuring in Statement : 
eq_atom: eq_atom$n(x;y)
, 
atom: Atom$n
, 
bool: 𝔹
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
eq_atom: eq_atom$n(x;y)
Lemmas referenced : 
btrue_wf, 
bfalse_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
atomn_eqEquality, 
hypothesisEquality, 
extract_by_obid, 
hypothesis, 
sqequalHypSubstitution, 
sqequalRule, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
atomnEquality, 
isect_memberEquality, 
isectElimination, 
thin, 
because_Cache
Latex:
\mforall{}[x,y:Atom1].    (x  =a1  y  \mmember{}  \mBbbB{})
Date html generated:
2019_06_20-AM-11_20_14
Last ObjectModification:
2018_08_08-AM-10_56_01
Theory : atom_1
Home
Index