Nuprl Lemma : mu_wf
∀[f:ℕ ⟶ 𝔹]. mu(f) ∈ ℕ supposing ∃n:ℕ. (↑(f n))
Proof
Definitions occuring in Statement : 
mu: mu(f), 
nat: ℕ, 
assert: ↑b, 
bool: 𝔹, 
uimplies: b supposing a, 
uall: ∀[x:A]. B[x], 
exists: ∃x:A. B[x], 
member: t ∈ T, 
apply: f a, 
function: x:A ⟶ B[x]
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
uimplies: b supposing a, 
mu: mu(f), 
subtype_rel: A ⊆r B, 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
int_upper: {i...}, 
nat: ℕ, 
all: ∀x:A. B[x], 
exists: ∃x:A. B[x], 
prop: ℙ
Lemmas referenced : 
mu-ge_wf, 
subtype_rel_dep_function, 
nat_wf, 
bool_wf, 
int_upper_wf, 
subtype_rel_self, 
assert_wf, 
exists_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
natural_numberEquality, 
hypothesisEquality, 
applyEquality, 
hypothesis, 
lambdaEquality, 
independent_isectElimination, 
because_Cache, 
lambdaFormation, 
productElimination, 
dependent_pairFormation, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
isect_memberEquality, 
functionEquality
Latex:
\mforall{}[f:\mBbbN{}  {}\mrightarrow{}  \mBbbB{}].  mu(f)  \mmember{}  \mBbbN{}  supposing  \mexists{}n:\mBbbN{}.  (\muparrow{}(f  n))
Date html generated:
2016_05_14-AM-07_29_30
Last ObjectModification:
2015_12_26-PM-01_26_27
Theory : int_2
Home
Index