Nuprl Lemma : mu-property

[f:ℕ ⟶ 𝔹]. {(↑(f mu(f))) ∧ (∀[i:ℕ]. ¬↑(f i) supposing i < mu(f))} supposing ∃n:ℕ(↑(f n))


Proof




Definitions occuring in Statement :  mu: mu(f) nat: assert: b bool: 𝔹 less_than: a < b uimplies: supposing a uall: [x:A]. B[x] guard: {T} exists: x:A. B[x] not: ¬A and: P ∧ Q apply: a function: x:A ⟶ B[x]
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T subtype_rel: A ⊆B so_lambda: λ2x.t[x] so_apply: x[s] uimplies: supposing a int_upper: {i...} nat: all: x:A. B[x] mu: mu(f) exists: x:A. B[x] prop: guard: {T} and: P ∧ Q not: ¬A implies:  Q false: False int_seg: {i..j-} lelt: i ≤ j < k le: A ≤ B
Lemmas referenced :  mu-ge-property subtype_rel_dep_function nat_wf bool_wf int_upper_wf subtype_rel_self assert_wf less_than_wf mu_wf assert_witness exists_wf lelt_wf
Rules used in proof :  cut lemma_by_obid sqequalHypSubstitution sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isectElimination thin natural_numberEquality isect_memberFormation hypothesis hypothesisEquality applyEquality sqequalRule lambdaEquality independent_isectElimination because_Cache lambdaFormation introduction productElimination dependent_pairFormation independent_pairFormation promote_hyp independent_functionElimination voidElimination dependent_functionElimination setElimination rename isect_memberEquality equalityTransitivity equalitySymmetry independent_pairEquality functionEquality dependent_set_memberEquality

Latex:
\mforall{}[f:\mBbbN{}  {}\mrightarrow{}  \mBbbB{}].  \{(\muparrow{}(f  mu(f)))  \mwedge{}  (\mforall{}[i:\mBbbN{}].  \mneg{}\muparrow{}(f  i)  supposing  i  <  mu(f))\}  supposing  \mexists{}n:\mBbbN{}.  (\muparrow{}(f  n))



Date html generated: 2016_05_14-AM-07_29_45
Last ObjectModification: 2015_12_26-PM-01_26_31

Theory : int_2


Home Index