Nuprl Lemma : mu-ge-property

[n:ℤ]. ∀[f:{n...} ⟶ 𝔹].  {(↑(f mu-ge(f;n))) ∧ (∀[i:{n..mu-ge(f;n)-}]. (¬↑(f i)))} supposing ∃m:{n...}. (↑(f m))


Proof




Definitions occuring in Statement :  mu-ge: mu-ge(f;n) int_upper: {i...} int_seg: {i..j-} assert: b bool: 𝔹 uimplies: supposing a uall: [x:A]. B[x] guard: {T} exists: x:A. B[x] not: ¬A and: P ∧ Q apply: a function: x:A ⟶ B[x] int:
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a guard: {T} and: P ∧ Q implies:  Q not: ¬A false: False exists: x:A. B[x] all: x:A. B[x] int_seg: {i..j-} lelt: i ≤ j < k less_than: a < b squash: T satisfiable_int_formula: satisfiable_int_formula(fmla) top: Top prop: subtype_rel: A ⊆B int_upper: {i...} decidable: Dec(P) or: P ∨ Q so_lambda: λ2x.t[x] so_apply: x[s] assert: b bnot: ¬bb sq_type: SQType(T) bfalse: ff ifthenelse: if then else fi  uiff: uiff(P;Q) btrue: tt it: unit: Unit bool: 𝔹 mu-ge: mu-ge(f;n) true: True less_than': less_than'(a;b) le: A ≤ B subtract: m rev_implies:  Q iff: ⇐⇒ Q has-value: (a)↓ cand: c∧ B nat:
Lemmas referenced :  assert_witness mu-ge_wf istype-int_upper istype-assert bool_wf istype-int int_seg_wf int_seg_properties full-omega-unsat intformand_wf intformless_wf itermVar_wf itermAdd_wf itermConstant_wf intformle_wf int_formula_prop_and_lemma istype-void int_formula_prop_less_lemma int_term_value_var_lemma int_term_value_add_lemma int_term_value_constant_lemma int_formula_prop_le_lemma int_formula_prop_wf int_seg_subtype_upper le_reflexive decidable__le intformnot_wf int_formula_prop_not_lemma istype-le istype-less_than primrec-wf2 istype-nat subtract_wf assert_wf uall_wf all_wf exists_wf assert-bnot bool_subtype_base subtype_base_sq bool_cases_sqequal eqff_to_assert eqtt_to_assert le_wf int_upper_wf lelt_wf int_term_value_subtract_lemma itermSubtract_wf decidable__lt int_formula_prop_eq_lemma intformeq_wf btrue_neq_bfalse not_assert_elim int_subtype_base assert_elim decidable__equal_int subtype_rel_self le-add-cancel add-commutes add-associates add-zero zero-mul add-mul-special minus-one-mul-top add-swap minus-one-mul minus-add condition-implies-le not-le-2 istype-false upper_subtype_upper subtype_rel_function int-value-type value-type-has-value set_subtype_base int_upper_properties
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :isect_memberFormation_alt,  introduction cut sqequalRule sqequalHypSubstitution productElimination thin independent_pairEquality extract_by_obid isectElimination applyEquality hypothesisEquality independent_isectElimination hypothesis independent_functionElimination Error :isect_memberEquality_alt,  Error :lambdaEquality_alt,  dependent_functionElimination because_Cache Error :functionIsTypeImplies,  Error :inhabitedIsType,  Error :isectIsTypeImplies,  Error :productIsType,  Error :functionIsType,  Error :universeIsType,  voidElimination Error :lambdaFormation_alt,  addEquality natural_numberEquality setElimination rename imageElimination approximateComputation Error :dependent_pairFormation_alt,  int_eqEquality independent_pairFormation Error :dependent_set_memberEquality_alt,  unionElimination Error :setIsType,  productEquality functionEquality cumulativity instantiate promote_hyp Error :equalityIsType1,  equalitySymmetry equalityTransitivity equalityElimination functionExtensionality applyLambdaEquality hyp_replacement Error :equalityIsType4,  multiplyEquality minusEquality intEquality callbyvalueReduce dependent_set_memberEquality dependent_pairFormation lambdaEquality isect_memberEquality voidEquality

Latex:
\mforall{}[n:\mBbbZ{}].  \mforall{}[f:\{n...\}  {}\mrightarrow{}  \mBbbB{}].
    \{(\muparrow{}(f  mu-ge(f;n)))  \mwedge{}  (\mforall{}[i:\{n..mu-ge(f;n)\msupminus{}\}].  (\mneg{}\muparrow{}(f  i)))\}  supposing  \mexists{}m:\{n...\}.  (\muparrow{}(f  m))



Date html generated: 2019_06_20-PM-01_16_43
Last ObjectModification: 2019_03_05-PM-03_39_24

Theory : int_2


Home Index