Nuprl Lemma : upper_subtype_upper

[m1,m2:ℤ].  {m1...} ⊆{m2...} supposing m2 ≤ m1


Proof




Definitions occuring in Statement :  int_upper: {i...} uimplies: supposing a subtype_rel: A ⊆B uall: [x:A]. B[x] le: A ≤ B int:
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a subtype_rel: A ⊆B prop:
Lemmas referenced :  int_upper_subtype_int_upper le_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality independent_isectElimination hypothesis sqequalRule axiomEquality isect_memberEquality because_Cache equalityTransitivity equalitySymmetry intEquality

Latex:
\mforall{}[m1,m2:\mBbbZ{}].    \{m1...\}  \msubseteq{}r  \{m2...\}  supposing  m2  \mleq{}  m1



Date html generated: 2018_05_21-PM-00_03_58
Last ObjectModification: 2018_05_19-AM-07_10_33

Theory : int_1


Home Index