Nuprl Lemma : upper_subtype_upper
∀[m1,m2:ℤ].  {m1...} ⊆r {m2...} supposing m2 ≤ m1
Proof
Definitions occuring in Statement : 
int_upper: {i...}
, 
uimplies: b supposing a
, 
subtype_rel: A ⊆r B
, 
uall: ∀[x:A]. B[x]
, 
le: A ≤ B
, 
int: ℤ
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
subtype_rel: A ⊆r B
, 
prop: ℙ
Lemmas referenced : 
int_upper_subtype_int_upper, 
le_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
independent_isectElimination, 
hypothesis, 
sqequalRule, 
axiomEquality, 
isect_memberEquality, 
because_Cache, 
equalityTransitivity, 
equalitySymmetry, 
intEquality
Latex:
\mforall{}[m1,m2:\mBbbZ{}].    \{m1...\}  \msubseteq{}r  \{m2...\}  supposing  m2  \mleq{}  m1
Date html generated:
2018_05_21-PM-00_03_58
Last ObjectModification:
2018_05_19-AM-07_10_33
Theory : int_1
Home
Index