Nuprl Lemma : int_seg_subtype_upper

[m1,n1,m2:ℤ].  {m1..n1-} ⊆{m2...} supposing m2 ≤ m1


Proof




Definitions occuring in Statement :  int_upper: {i...} int_seg: {i..j-} uimplies: supposing a subtype_rel: A ⊆B uall: [x:A]. B[x] le: A ≤ B int:
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a int_seg: {i..j-} int_upper: {i...} so_lambda: λ2x.t[x] so_apply: x[s] subtype_rel: A ⊆B lelt: i ≤ j < k and: P ∧ Q prop: all: x:A. B[x] implies:  Q le: A ≤ B guard: {T}
Lemmas referenced :  subtype_rel_sets lelt_wf le_wf le_transitivity
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule extract_by_obid sqequalHypSubstitution isectElimination thin intEquality because_Cache lambdaEquality hypothesisEquality hypothesis independent_isectElimination setElimination rename setEquality lambdaFormation productElimination axiomEquality isect_memberEquality equalityTransitivity equalitySymmetry

Latex:
\mforall{}[m1,n1,m2:\mBbbZ{}].    \{m1..n1\msupminus{}\}  \msubseteq{}r  \{m2...\}  supposing  m2  \mleq{}  m1



Date html generated: 2018_05_21-PM-00_03_57
Last ObjectModification: 2018_05_19-AM-07_10_32

Theory : int_1


Home Index