Nuprl Lemma : neg_assert_of_eq_atom1

[x,y:Atom1].  uiff(¬↑=a1 y;x ≠ y ∈ Atom1 )


Proof




Definitions occuring in Statement :  eq_atom: eq_atom$n(x;y) atom: Atom$n assert: b uiff: uiff(P;Q) uall: [x:A]. B[x] nequal: a ≠ b ∈  not: ¬A
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a not: ¬A implies:  Q prop: subtype_rel: A ⊆B nequal: a ≠ b ∈  false: False
Lemmas referenced :  assert_of_eq_atom1 equal-wf-base atom1_subtype_base not_wf assert_wf eq_atom_wf1 nequal_wf uiff_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut addLevel sqequalHypSubstitution productElimination thin independent_pairFormation independent_isectElimination lambdaFormation independent_functionElimination extract_by_obid isectElimination hypothesisEquality hypothesis atomnEquality applyEquality sqequalRule lambdaEquality dependent_functionElimination voidElimination instantiate cumulativity independent_pairEquality isect_memberEquality because_Cache equalityTransitivity equalitySymmetry

Latex:
\mforall{}[x,y:Atom1].    uiff(\mneg{}\muparrow{}x  =a1  y;x  \mneq{}  y  \mmember{}  Atom1  )



Date html generated: 2017_04_14-AM-07_14_35
Last ObjectModification: 2017_02_27-PM-02_50_15

Theory : atom_1


Home Index