Nuprl Lemma : neg_assert_of_eq_atom1
∀[x,y:Atom1].  uiff(¬↑x =a1 y;x ≠ y ∈ Atom1 )
Proof
Definitions occuring in Statement : 
eq_atom: eq_atom$n(x;y)
, 
atom: Atom$n
, 
assert: ↑b
, 
uiff: uiff(P;Q)
, 
uall: ∀[x:A]. B[x]
, 
nequal: a ≠ b ∈ T 
, 
not: ¬A
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uiff: uiff(P;Q)
, 
and: P ∧ Q
, 
uimplies: b supposing a
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
prop: ℙ
, 
subtype_rel: A ⊆r B
, 
nequal: a ≠ b ∈ T 
, 
false: False
Lemmas referenced : 
assert_of_eq_atom1, 
equal-wf-base, 
atom1_subtype_base, 
not_wf, 
assert_wf, 
eq_atom_wf1, 
nequal_wf, 
uiff_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
addLevel, 
sqequalHypSubstitution, 
productElimination, 
thin, 
independent_pairFormation, 
independent_isectElimination, 
lambdaFormation, 
independent_functionElimination, 
extract_by_obid, 
isectElimination, 
hypothesisEquality, 
hypothesis, 
atomnEquality, 
applyEquality, 
sqequalRule, 
lambdaEquality, 
dependent_functionElimination, 
voidElimination, 
instantiate, 
cumulativity, 
independent_pairEquality, 
isect_memberEquality, 
because_Cache, 
equalityTransitivity, 
equalitySymmetry
Latex:
\mforall{}[x,y:Atom1].    uiff(\mneg{}\muparrow{}x  =a1  y;x  \mneq{}  y  \mmember{}  Atom1  )
Date html generated:
2017_04_14-AM-07_14_35
Last ObjectModification:
2017_02_27-PM-02_50_15
Theory : atom_1
Home
Index