Nuprl Lemma : st-lookup-outl

[T:Id ─→ Type]
  ∀tab:secret-table(T). ∀x:Atom1.
    ∃n:ℕ||tab|| 
     ((n ≤ ptr(tab))
     ∧ (st-atom(tab;n) x ∈ Atom1)
     ∧ (outl(st-lookup(tab;x)) = <key(tab;n), data(tab;n)> ∈ (ℕ Atom1 × data(T)))) 
    supposing ↑isl(st-lookup(tab;x))


Proof




Definitions occuring in Statement :  st-lookup: st-lookup(tab;x) st-data: data(tab;n) st-key: key(tab;n) st-atom: st-atom(tab;n) st-ptr: ptr(tab) st-length: ||tab||  secret-table: secret-table(T) data: data(T) Id: Id int_seg: {i..j-} nat: atom: Atom$n outl: outl(x) assert: b isl: isl(x) uimplies: supposing a uall: [x:A]. B[x] le: A ≤ B all: x:A. B[x] exists: x:A. B[x] and: P ∧ Q function: x:A ─→ B[x] pair: <a, b> product: x:A × B[x] union: left right natural_number: $n universe: Type equal: t ∈ T
Lemmas :  mu_wf le_int_wf bool_wf eqtt_to_assert assert_of_le_int bor_wf lt_int_wf btrue_wf eqff_to_assert equal_wf bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot le_wf eq_atom_wf1 decidable__lt false_wf not-le-2 condition-implies-le minus-add minus-one-mul add-swap add-commutes add_functionality_wrt_le le-add-cancel lelt_wf data_wf nat_wf iff_transitivity assert_wf or_wf less_than_wf true_wf iff_weakening_uiff assert_of_bor assert_of_lt_int add-mul-special zero-mul add-zero add-associates mu-property set_subtype_base int_subtype_base equal-wf-T-base bnot_wf uiff_transitivity assert_functionality_wrt_uiff bnot_thru_bor band_wf squash_wf bnot_of_lt_int bnot_of_le_int assert_of_band pair_eta_rw iff_weakening_equal atom1_subtype_base less_than_transitivity1 less_than_irreflexivity uall_wf isect_wf not_wf assert_of_eq_atom1
\mforall{}[T:Id  {}\mrightarrow{}  Type]
    \mforall{}tab:secret-table(T).  \mforall{}x:Atom1.
        \mexists{}n:\mBbbN{}||tab|| 
          ((n  \mleq{}  ptr(tab))  \mwedge{}  (st-atom(tab;n)  =  x)  \mwedge{}  (outl(st-lookup(tab;x))  =  <key(tab;n),  data(tab;n)>)) 
        supposing  \muparrow{}isl(st-lookup(tab;x))



Date html generated: 2015_07_17-AM-08_57_02
Last ObjectModification: 2015_02_04-PM-06_28_19

Home Index