Step
*
1
1
1
2
of Lemma
pv11_p1_adopted_prior
1. Cmd : {T:Type| valueall-type(T)} @i'
2. f : pv11_p1_headers_type{i:l}(Cmd)@i'
3. (f [decision]) = (ℤ × Cmd) ∈ Type
4. (f [propose]) = (ℤ × Cmd) ∈ Type
5. (f ``pv11_p1 adopted``) = (pv11_p1_Ballot_Num() × ((pv11_p1_Ballot_Num() × ℤ × Cmd) List)) ∈ Type
6. (f ``pv11_p1 preempted``) = pv11_p1_Ballot_Num() ∈ Type
7. (f ``pv11_p1 p2b``) = (Id × pv11_p1_Ballot_Num() × ℤ × pv11_p1_Ballot_Num()) ∈ Type
8. (f ``pv11_p1 p2a``) = (Id × pv11_p1_Ballot_Num() × ℤ × Cmd) ∈ Type
9. (f ``pv11_p1 p1b``)
= (Id × pv11_p1_Ballot_Num() × pv11_p1_Ballot_Num() × ((pv11_p1_Ballot_Num() × ℤ × Cmd) List))
∈ Type
10. (f ``pv11_p1 p1a``) = (Id × pv11_p1_Ballot_Num()) ∈ Type
11. f ∈ Name ─→ Type
12. es : EO+(Message(f))@i'
13. e : E@i
14. ¬↑pred(e) ∈b pv11_p1_propose'base(Cmd;f)
15. ¬↑first(e)
16. ldrs_uid : Id ─→ ℤ@i
17. bnum : pv11_p1_Ballot_Num()@i
18. active : 𝔹@i
19. pvals : (pv11_p1_Ballot_Num() × ℤ × Cmd) List@i
20. b' : pv11_p1_Ballot_Num()@i
21. s : ℤ@i
22. c : Cmd@i
23. c' : Cmd@i
24. ¬False@i
25. <bnum, pvals> ∈ pv11_p1_adopted'base(Cmd;f)(pred(e))@i
26. (<b', s, c'> ∈ pvals)@i
27. ↑pred(e) ∈b pv11_p1_adopted'base(Cmd;f)
28. s2 : pv11_p1_Ballot_Num()@i
29. s4 : 𝔹@i
30. s5 : (ℤ × Cmd) List@i
31. <s2, s4, s5> ∈ pv11_p1_LeaderState(Cmd;ldrs_uid;f)(pred(e))@i
32. bnum = s2 ∈ pv11_p1_Ballot_Num()
33. active = tt
34. bnum = s2 ∈ pv11_p1_Ballot_Num()
35. (<s, c> ∈ s5)
36. ¬(∃c':Cmd. (<s, c'> ∈ pv11_p1_pmax(Cmd;ldrs_uid) pvals))
⊢ ↓∃b:pv11_p1_Ballot_Num(). ((<b, s, c> ∈ pvals) ∧ (↑(pv11_p1_leq_bnum(ldrs_uid) b' b)))
BY
{ (D (-1) THEN InstLemma `pv11_p1_pmax_desc_implies` [⌈Cmd⌉;⌈ldrs_uid⌉;⌈pvals⌉;⌈b'⌉;⌈s⌉;⌈c'⌉]⋅ THEN Auto) }
Latex:
Latex:
1. Cmd : \{T:Type| valueall-type(T)\} @i'
2. f : pv11\_p1\_headers\_type\{i:l\}(Cmd)@i'
3. (f [decision]) = (\mBbbZ{} \mtimes{} Cmd)
4. (f [propose]) = (\mBbbZ{} \mtimes{} Cmd)
5. (f ``pv11\_p1 adopted``) = (pv11\_p1\_Ballot\_Num() \mtimes{} ((pv11\_p1\_Ballot\_Num() \mtimes{} \mBbbZ{} \mtimes{} Cmd) List))
6. (f ``pv11\_p1 preempted``) = pv11\_p1\_Ballot\_Num()
7. (f ``pv11\_p1 p2b``) = (Id \mtimes{} pv11\_p1\_Ballot\_Num() \mtimes{} \mBbbZ{} \mtimes{} pv11\_p1\_Ballot\_Num())
8. (f ``pv11\_p1 p2a``) = (Id \mtimes{} pv11\_p1\_Ballot\_Num() \mtimes{} \mBbbZ{} \mtimes{} Cmd)
9. (f ``pv11\_p1 p1b``)
= (Id \mtimes{} pv11\_p1\_Ballot\_Num() \mtimes{} pv11\_p1\_Ballot\_Num() \mtimes{} ((pv11\_p1\_Ballot\_Num() \mtimes{} \mBbbZ{} \mtimes{} Cmd) List))
10. (f ``pv11\_p1 p1a``) = (Id \mtimes{} pv11\_p1\_Ballot\_Num())
11. f \mmember{} Name {}\mrightarrow{} Type
12. es : EO+(Message(f))@i'
13. e : E@i
14. \mneg{}\muparrow{}pred(e) \mmember{}\msubb{} pv11\_p1\_propose'base(Cmd;f)
15. \mneg{}\muparrow{}first(e)
16. ldrs$_{uid}$ : Id {}\mrightarrow{} \mBbbZ{}@i
17. bnum : pv11\_p1\_Ballot\_Num()@i
18. active : \mBbbB{}@i
19. pvals : (pv11\_p1\_Ballot\_Num() \mtimes{} \mBbbZ{} \mtimes{} Cmd) List@i
20. b' : pv11\_p1\_Ballot\_Num()@i
21. s : \mBbbZ{}@i
22. c : Cmd@i
23. c' : Cmd@i
24. \mneg{}False@i
25. <bnum, pvals> \mmember{} pv11\_p1\_adopted'base(Cmd;f)(pred(e))@i
26. (<b', s, c'> \mmember{} pvals)@i
27. \muparrow{}pred(e) \mmember{}\msubb{} pv11\_p1\_adopted'base(Cmd;f)
28. s2 : pv11\_p1\_Ballot\_Num()@i
29. s4 : \mBbbB{}@i
30. s5 : (\mBbbZ{} \mtimes{} Cmd) List@i
31. <s2, s4, s5> \mmember{} pv11\_p1\_LeaderState(Cmd;ldrs$_{uid}$;f)(pred(e))@i
32. bnum = s2
33. active = tt
34. bnum = s2
35. (<s, c> \mmember{} s5)
36. \mneg{}(\mexists{}c':Cmd. (<s, c'> \mmember{} pv11\_p1\_pmax(Cmd;ldrs$_{uid}$) pvals))
\mvdash{} \mdownarrow{}\mexists{}b:pv11\_p1\_Ballot\_Num(). ((<b, s, c> \mmember{} pvals) \mwedge{} (\muparrow{}(pv11\_p1\_leq\_bnum(ldrs$_{uid}\mbackslash{}f\000Cf24) b' b)))
By
Latex:
(D (-1)
THEN InstLemma `pv11\_p1\_pmax\_desc\_implies` [\mkleeneopen{}Cmd\mkleeneclose{};\mkleeneopen{}ldrs$_{uid}$\mkleeneclose{};\mkleeneopen{}pvals\mkleeneclose{};\mkleeneopen{}b'\mkleeneclose{};\mkleeneopen{}\000Cs\mkleeneclose{};\mkleeneopen{}c'\mkleeneclose{}]\mcdot{}
THEN Auto)
Home
Index