Step
*
1
of Lemma
classfun-res-disjoint-union-comb-right
.....antecedent..... 
1. Info : Type
2. A : Type
3. B : Type
4. es : EO+(Info)
5. X : EClass(A)
6. Y : EClass(B)
7. e : E
8. ↑e ∈b Y
9. disjoint-classrel(es;A;X;B;Y)
10. single-valued-classrel(es;Y;B)
⊢ ↑e ∈b lifting-1(λx.(inr x ))|Y|
BY
{ (Using [`B',⌈A + B⌉] (BLemma `member-eclass-simple-comb-1`)⋅
   THEN Auto
   THEN Try (Using [`T',⌈A + B⌉] (BLemma `bag-null_wf`)⋅)
   THEN Auto
   THEN LiftingReduce
   THEN ParallelLast
   THEN Try (Using [`T',⌈A + B⌉] (BLemma `bag-null_wf`)⋅)
   THEN Auto
   THEN (InstLemma `bag-combine-null` [⌈B⌉;⌈A + B⌉]⋅ THENA Auto)
   THEN (RWO "-1" (-2) THENA Auto)
   THEN Thin (-1)
   THEN RepUR ``bag-null single-bag`` (-1)
   THEN Try ((RWO "assert-bag-null<" 0 THENA Auto))
   THEN SupposeNot
   THEN (Assert ⌈False⌉⋅ THEN Auto)
   THEN (RWO "bag-member-not-bag-null<" (-1) THENA Auto)
   THEN SquashExRepD
   THEN InstHyp [⌈x⌉] (-3)⋅
   THEN Auto)⋅ }
Latex:
Latex:
.....antecedent..... 
1.  Info  :  Type
2.  A  :  Type
3.  B  :  Type
4.  es  :  EO+(Info)
5.  X  :  EClass(A)
6.  Y  :  EClass(B)
7.  e  :  E
8.  \muparrow{}e  \mmember{}\msubb{}  Y
9.  disjoint-classrel(es;A;X;B;Y)
10.  single-valued-classrel(es;Y;B)
\mvdash{}  \muparrow{}e  \mmember{}\msubb{}  lifting-1(\mlambda{}x.(inr  x  ))|Y|
By
Latex:
(Using  [`B',\mkleeneopen{}A  +  B\mkleeneclose{}]  (BLemma  `member-eclass-simple-comb-1`)\mcdot{}
  THEN  Auto
  THEN  Try  (Using  [`T',\mkleeneopen{}A  +  B\mkleeneclose{}]  (BLemma  `bag-null\_wf`)\mcdot{})
  THEN  Auto
  THEN  LiftingReduce
  THEN  ParallelLast
  THEN  Try  (Using  [`T',\mkleeneopen{}A  +  B\mkleeneclose{}]  (BLemma  `bag-null\_wf`)\mcdot{})
  THEN  Auto
  THEN  (InstLemma  `bag-combine-null`  [\mkleeneopen{}B\mkleeneclose{};\mkleeneopen{}A  +  B\mkleeneclose{}]\mcdot{}  THENA  Auto)
  THEN  (RWO  "-1"  (-2)  THENA  Auto)
  THEN  Thin  (-1)
  THEN  RepUR  ``bag-null  single-bag``  (-1)
  THEN  Try  ((RWO  "assert-bag-null<"  0  THENA  Auto))
  THEN  SupposeNot
  THEN  (Assert  \mkleeneopen{}False\mkleeneclose{}\mcdot{}  THEN  Auto)
  THEN  (RWO  "bag-member-not-bag-null<"  (-1)  THENA  Auto)
  THEN  SquashExRepD
  THEN  InstHyp  [\mkleeneopen{}x\mkleeneclose{}]  (-3)\mcdot{}
  THEN  Auto)\mcdot{}
Home
Index