Nuprl Lemma : classfun-res-disjoint-union-comb-right
∀[Info,A,B:Type]. ∀[es:EO+(Info)]. ∀[X:EClass(A)]. ∀[Y:EClass(B)]. ∀[e:E].
  (X (+) Y@e = (inr Y@e ) ∈ (A + B)) supposing 
     (single-valued-classrel(es;Y;B) and 
     disjoint-classrel(es;A;X;B;Y) and 
     (↑e ∈b Y))
Proof
Definitions occuring in Statement : 
disjoint-union-comb: X (+) Y
, 
classfun-res: X@e
, 
single-valued-classrel: single-valued-classrel(es;X;T)
, 
disjoint-classrel: disjoint-classrel(es;A;X;B;Y)
, 
member-eclass: e ∈b X
, 
eclass: EClass(A[eo; e])
, 
event-ordering+: EO+(Info)
, 
es-E: E
, 
assert: ↑b
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
inr: inr x 
, 
union: left + right
, 
universe: Type
, 
equal: s = t ∈ T
Lemmas : 
member-eclass-simple-comb-1, 
lifting-1_wf, 
assert-bag-null, 
bag-combine-null, 
single-bag_wf, 
null_cons_lemma, 
decidable__assert, 
bag-member-not-bag-null, 
assert_wf, 
bag-null_wf, 
bag-combine_wf, 
lifting1_wf, 
bag_wf, 
not_wf, 
bag-combine-single-right-as-map, 
sv-bag-only-map, 
member-eclass-iff-size, 
single-valued-classrel-implies-bag
Latex:
\mforall{}[Info,A,B:Type].  \mforall{}[es:EO+(Info)].  \mforall{}[X:EClass(A)].  \mforall{}[Y:EClass(B)].  \mforall{}[e:E].
    (X  (+)  Y@e  =  (inr  Y@e  ))  supposing 
          (single-valued-classrel(es;Y;B)  and 
          disjoint-classrel(es;A;X;B;Y)  and 
          (\muparrow{}e  \mmember{}\msubb{}  Y))
Date html generated:
2015_07_23-AM-11_29_12
Last ObjectModification:
2015_01_28-PM-11_13_37
Home
Index