Nuprl Lemma : bag-combine-single-right-as-map
∀[bs,f:Top].  (⋃x∈bs.{f[x]} ~ bag-map(λx.f[x];bs))
Proof
Definitions occuring in Statement : 
bag-combine: ⋃x∈bs.f[x]
, 
bag-map: bag-map(f;bs)
, 
single-bag: {x}
, 
uall: ∀[x:A]. B[x]
, 
top: Top
, 
so_apply: x[s]
, 
lambda: λx.A[x]
, 
sqequal: s ~ t
Definitions unfolded in proof : 
bag-map: bag-map(f;bs)
, 
single-bag: {x}
, 
bag-combine: ⋃x∈bs.f[x]
, 
bag-union: bag-union(bbs)
, 
uall: ∀[x:A]. B[x]
, 
so_lambda: λ2x.t[x]
, 
member: t ∈ T
, 
top: Top
, 
so_apply: x[s]
Lemmas referenced : 
concat-map-single, 
top_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
hypothesis, 
isect_memberFormation, 
introduction, 
sqequalAxiom, 
hypothesisEquality, 
because_Cache
Latex:
\mforall{}[bs,f:Top].    (\mcup{}x\mmember{}bs.\{f[x]\}  \msim{}  bag-map(\mlambda{}x.f[x];bs))
Date html generated:
2016_05_15-PM-02_28_32
Last ObjectModification:
2015_12_27-AM-09_50_16
Theory : bags
Home
Index