Nuprl Lemma : bag-combine-single-right-as-map

[bs,f:Top].  (⋃x∈bs.{f[x]} bag-map(λx.f[x];bs))


Proof




Definitions occuring in Statement :  bag-combine: x∈bs.f[x] bag-map: bag-map(f;bs) single-bag: {x} uall: [x:A]. B[x] top: Top so_apply: x[s] lambda: λx.A[x] sqequal: t
Definitions unfolded in proof :  bag-map: bag-map(f;bs) single-bag: {x} bag-combine: x∈bs.f[x] bag-union: bag-union(bbs) uall: [x:A]. B[x] so_lambda: λ2x.t[x] member: t ∈ T top: Top so_apply: x[s]
Lemmas referenced :  concat-map-single top_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep cut lemma_by_obid sqequalHypSubstitution isectElimination thin isect_memberEquality voidElimination voidEquality hypothesis isect_memberFormation introduction sqequalAxiom hypothesisEquality because_Cache

Latex:
\mforall{}[bs,f:Top].    (\mcup{}x\mmember{}bs.\{f[x]\}  \msim{}  bag-map(\mlambda{}x.f[x];bs))



Date html generated: 2016_05_15-PM-02_28_32
Last ObjectModification: 2015_12_27-AM-09_50_16

Theory : bags


Home Index