Nuprl Lemma : member-eclass-iff-size

[Info,T:Type]. ∀[X:EClass(T)]. ∀[es:EO+(Info)]. ∀[e:E].  (↑e ∈b ⇐⇒ 0 < #(X es e))


Proof




Definitions occuring in Statement :  member-eclass: e ∈b X eclass: EClass(A[eo; e]) event-ordering+: EO+(Info) es-E: E assert: b less_than: a < b uall: [x:A]. B[x] iff: ⇐⇒ Q apply: a natural_number: $n universe: Type bag-size: #(bs)
Lemmas :  assert_wf bnot_wf eq_int_wf bag-size_wf nat_wf iff_transitivity not_wf equal-wf-T-base iff_weakening_uiff assert_of_bnot assert_of_eq_int less_than_transitivity1 le_weakening less_than_irreflexivity less_than_wf member-less_than assert_witness es-E_wf event-ordering+_subtype event-ordering+_wf eclass_wf
\mforall{}[Info,T:Type].  \mforall{}[X:EClass(T)].  \mforall{}[es:EO+(Info)].  \mforall{}[e:E].    (\muparrow{}e  \mmember{}\msubb{}  X  \mLeftarrow{}{}\mRightarrow{}  0  <  \#(X  es  e))



Date html generated: 2015_07_17-PM-00_16_35
Last ObjectModification: 2015_01_28-AM-00_01_42

Home Index