Nuprl Lemma : bag-combine-null
∀[A,B:Type]. ∀[f:A ⟶ bag(B)]. ∀[b:bag(A)].  uiff(↑bag-null(⋃x∈b.f[x]);∀x:A. (x ↓∈ b 
⇒ (↑bag-null(f[x]))))
Proof
Definitions occuring in Statement : 
bag-member: x ↓∈ bs
, 
bag-combine: ⋃x∈bs.f[x]
, 
bag-null: bag-null(bs)
, 
bag: bag(T)
, 
assert: ↑b
, 
uiff: uiff(P;Q)
, 
uall: ∀[x:A]. B[x]
, 
so_apply: x[s]
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
uiff: uiff(P;Q)
, 
and: P ∧ Q
, 
uimplies: b supposing a
, 
member: t ∈ T
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
uall: ∀[x:A]. B[x]
, 
so_apply: x[s]
, 
rev_uimplies: rev_uimplies(P;Q)
, 
prop: ℙ
, 
so_lambda: λ2x.t[x]
, 
not: ¬A
, 
false: False
, 
exists: ∃x:A. B[x]
, 
cand: A c∧ B
, 
squash: ↓T
, 
true: True
, 
subtype_rel: A ⊆r B
, 
guard: {T}
, 
iff: P 
⇐⇒ Q
Lemmas referenced : 
bag-member-empty-iff, 
iff_weakening_equal, 
true_wf, 
squash_wf, 
and_wf, 
bag-member-combine, 
empty-bag-iff-no-member, 
bag_wf, 
all_wf, 
bag-combine_wf, 
bag-null_wf, 
assert_wf, 
assert_witness, 
bag-member_wf, 
assert-bag-null
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
independent_pairFormation, 
isect_memberFormation, 
introduction, 
cut, 
lambdaFormation, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
applyEquality, 
hypothesis, 
productElimination, 
independent_isectElimination, 
sqequalRule, 
lambdaEquality, 
dependent_functionElimination, 
because_Cache, 
independent_functionElimination, 
functionEquality, 
universeEquality, 
independent_pairEquality, 
isect_memberEquality, 
equalityTransitivity, 
equalitySymmetry, 
dependent_pairFormation, 
imageMemberEquality, 
baseClosed, 
voidElimination, 
imageElimination, 
natural_numberEquality
Latex:
\mforall{}[A,B:Type].  \mforall{}[f:A  {}\mrightarrow{}  bag(B)].  \mforall{}[b:bag(A)].
    uiff(\muparrow{}bag-null(\mcup{}x\mmember{}b.f[x]);\mforall{}x:A.  (x  \mdownarrow{}\mmember{}  b  {}\mRightarrow{}  (\muparrow{}bag-null(f[x]))))
Date html generated:
2016_05_15-PM-02_40_16
Last ObjectModification:
2016_01_16-AM-08_47_48
Theory : bags
Home
Index