Nuprl Lemma : bag-combine-null

[A,B:Type]. ∀[f:A ⟶ bag(B)]. ∀[b:bag(A)].  uiff(↑bag-null(⋃x∈b.f[x]);∀x:A. (x ↓∈  (↑bag-null(f[x]))))


Proof




Definitions occuring in Statement :  bag-member: x ↓∈ bs bag-combine: x∈bs.f[x] bag-null: bag-null(bs) bag: bag(T) assert: b uiff: uiff(P;Q) uall: [x:A]. B[x] so_apply: x[s] all: x:A. B[x] implies:  Q function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a member: t ∈ T all: x:A. B[x] implies:  Q uall: [x:A]. B[x] so_apply: x[s] rev_uimplies: rev_uimplies(P;Q) prop: so_lambda: λ2x.t[x] not: ¬A false: False exists: x:A. B[x] cand: c∧ B squash: T true: True subtype_rel: A ⊆B guard: {T} iff: ⇐⇒ Q
Lemmas referenced :  bag-member-empty-iff iff_weakening_equal true_wf squash_wf and_wf bag-member-combine empty-bag-iff-no-member bag_wf all_wf bag-combine_wf bag-null_wf assert_wf assert_witness bag-member_wf assert-bag-null
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity independent_pairFormation isect_memberFormation introduction cut lambdaFormation lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality applyEquality hypothesis productElimination independent_isectElimination sqequalRule lambdaEquality dependent_functionElimination because_Cache independent_functionElimination functionEquality universeEquality independent_pairEquality isect_memberEquality equalityTransitivity equalitySymmetry dependent_pairFormation imageMemberEquality baseClosed voidElimination imageElimination natural_numberEquality

Latex:
\mforall{}[A,B:Type].  \mforall{}[f:A  {}\mrightarrow{}  bag(B)].  \mforall{}[b:bag(A)].
    uiff(\muparrow{}bag-null(\mcup{}x\mmember{}b.f[x]);\mforall{}x:A.  (x  \mdownarrow{}\mmember{}  b  {}\mRightarrow{}  (\muparrow{}bag-null(f[x]))))



Date html generated: 2016_05_15-PM-02_40_16
Last ObjectModification: 2016_01_16-AM-08_47_48

Theory : bags


Home Index