Nuprl Lemma : empty-bag-iff-no-member

[T:Type]. ∀[bs:bag(T)].  uiff(bs {} ∈ bag(T);∀x:T. x ↓∈ bs))


Proof




Definitions occuring in Statement :  bag-member: x ↓∈ bs empty-bag: {} bag: bag(T) uiff: uiff(P;Q) uall: [x:A]. B[x] all: x:A. B[x] not: ¬A universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a all: x:A. B[x] not: ¬A implies:  Q false: False prop: so_lambda: λ2x.t[x] so_apply: x[s] bag: bag(T) quotient: x,y:A//B[x; y] subtype_rel: A ⊆B empty-bag: {} so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] iff: ⇐⇒ Q rev_implies:  Q or: P ∨ Q cons: [a b] bag-member: x ↓∈ bs exists: x:A. B[x] cand: c∧ B squash: T
Lemmas referenced :  bag-member_wf equal-wf-T-base bag_wf all_wf not_wf bag-member-empty list-subtype-bag equal-wf-base list_wf permutation_wf quotient-member-eq permutation-equiv nil_wf permutation_inversion permutation-nil-iff equal_wf list-cases product_subtype_list cons_wf cons_member l_member_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut independent_pairFormation lambdaFormation thin hypothesis sqequalHypSubstitution independent_functionElimination voidElimination extract_by_obid isectElimination cumulativity hypothesisEquality equalityTransitivity equalitySymmetry sqequalRule lambdaEquality dependent_functionElimination because_Cache baseClosed productElimination independent_pairEquality isect_memberEquality axiomEquality universeEquality hyp_replacement applyLambdaEquality independent_isectElimination pointwiseFunctionalityForEquality functionEquality pertypeElimination applyEquality productEquality rename unionElimination promote_hyp hypothesis_subsumption dependent_pairFormation inlFormation imageMemberEquality

Latex:
\mforall{}[T:Type].  \mforall{}[bs:bag(T)].    uiff(bs  =  \{\};\mforall{}x:T.  (\mneg{}x  \mdownarrow{}\mmember{}  bs))



Date html generated: 2017_10_01-AM-08_53_17
Last ObjectModification: 2017_07_26-PM-04_34_59

Theory : bags


Home Index