Nuprl Lemma : empty-bag-iff-no-member
∀[T:Type]. ∀[bs:bag(T)].  uiff(bs = {} ∈ bag(T);∀x:T. (¬x ↓∈ bs))
Proof
Definitions occuring in Statement : 
bag-member: x ↓∈ bs
, 
empty-bag: {}
, 
bag: bag(T)
, 
uiff: uiff(P;Q)
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
not: ¬A
, 
universe: Type
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uiff: uiff(P;Q)
, 
and: P ∧ Q
, 
uimplies: b supposing a
, 
all: ∀x:A. B[x]
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
false: False
, 
prop: ℙ
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
bag: bag(T)
, 
quotient: x,y:A//B[x; y]
, 
subtype_rel: A ⊆r B
, 
empty-bag: {}
, 
so_lambda: λ2x y.t[x; y]
, 
so_apply: x[s1;s2]
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
or: P ∨ Q
, 
cons: [a / b]
, 
bag-member: x ↓∈ bs
, 
exists: ∃x:A. B[x]
, 
cand: A c∧ B
, 
squash: ↓T
Lemmas referenced : 
bag-member_wf, 
equal-wf-T-base, 
bag_wf, 
all_wf, 
not_wf, 
bag-member-empty, 
list-subtype-bag, 
equal-wf-base, 
list_wf, 
permutation_wf, 
quotient-member-eq, 
permutation-equiv, 
nil_wf, 
permutation_inversion, 
permutation-nil-iff, 
equal_wf, 
list-cases, 
product_subtype_list, 
cons_wf, 
cons_member, 
l_member_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
independent_pairFormation, 
lambdaFormation, 
thin, 
hypothesis, 
sqequalHypSubstitution, 
independent_functionElimination, 
voidElimination, 
extract_by_obid, 
isectElimination, 
cumulativity, 
hypothesisEquality, 
equalityTransitivity, 
equalitySymmetry, 
sqequalRule, 
lambdaEquality, 
dependent_functionElimination, 
because_Cache, 
baseClosed, 
productElimination, 
independent_pairEquality, 
isect_memberEquality, 
axiomEquality, 
universeEquality, 
hyp_replacement, 
applyLambdaEquality, 
independent_isectElimination, 
pointwiseFunctionalityForEquality, 
functionEquality, 
pertypeElimination, 
applyEquality, 
productEquality, 
rename, 
unionElimination, 
promote_hyp, 
hypothesis_subsumption, 
dependent_pairFormation, 
inlFormation, 
imageMemberEquality
Latex:
\mforall{}[T:Type].  \mforall{}[bs:bag(T)].    uiff(bs  =  \{\};\mforall{}x:T.  (\mneg{}x  \mdownarrow{}\mmember{}  bs))
Date html generated:
2017_10_01-AM-08_53_17
Last ObjectModification:
2017_07_26-PM-04_34_59
Theory : bags
Home
Index