Nuprl Lemma : bag-member-empty
∀[T:Type]. ∀[x:T]. False supposing x ↓∈ {}
Proof
Definitions occuring in Statement :
bag-member: x ↓∈ bs
,
empty-bag: {}
,
uimplies: b supposing a
,
uall: ∀[x:A]. B[x]
,
false: False
,
universe: Type
Definitions unfolded in proof :
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
uimplies: b supposing a
,
false: False
,
bag-member: x ↓∈ bs
,
squash: ↓T
,
exists: ∃x:A. B[x]
,
and: P ∧ Q
,
prop: ℙ
,
subtype_rel: A ⊆r B
,
nat: ℕ
,
all: ∀x:A. B[x]
,
or: P ∨ Q
,
bag-size: #(bs)
,
not: ¬A
,
implies: P
⇒ Q
,
cons: [a / b]
,
top: Top
,
uiff: uiff(P;Q)
,
bag-null: bag-null(bs)
,
null: null(as)
,
bfalse: ff
,
assert: ↑b
,
ifthenelse: if b then t else f fi
Lemmas referenced :
bag_size_empty_lemma,
equal-wf-T-base,
bag-size_wf,
nat_wf,
bag-member_wf,
empty-bag_wf,
list-cases,
length_of_nil_lemma,
null_nil_lemma,
btrue_wf,
member-implies-null-eq-bfalse,
nil_wf,
btrue_neq_bfalse,
product_subtype_list,
length_of_cons_lemma,
assert-bag-null
Rules used in proof :
sqequalSubstitution,
sqequalTransitivity,
computationStep,
sqequalReflexivity,
isect_memberFormation,
introduction,
cut,
sqequalHypSubstitution,
imageElimination,
productElimination,
thin,
hypothesis,
sqequalRule,
extract_by_obid,
natural_numberEquality,
hyp_replacement,
equalitySymmetry,
Error :applyLambdaEquality,
isectElimination,
intEquality,
cumulativity,
hypothesisEquality,
applyEquality,
lambdaEquality,
setElimination,
rename,
baseClosed,
because_Cache,
isect_memberEquality,
equalityTransitivity,
voidElimination,
universeEquality,
dependent_functionElimination,
unionElimination,
independent_isectElimination,
independent_functionElimination,
promote_hyp,
hypothesis_subsumption,
voidEquality,
independent_pairFormation
Latex:
\mforall{}[T:Type]. \mforall{}[x:T]. False supposing x \mdownarrow{}\mmember{} \{\}
Date html generated:
2016_10_25-AM-10_26_58
Last ObjectModification:
2016_07_12-AM-06_43_04
Theory : bags
Home
Index