Nuprl Lemma : bag-member-empty
∀[T:Type]. ∀[x:T].  False supposing x ↓∈ {}
Proof
Definitions occuring in Statement : 
bag-member: x ↓∈ bs
, 
empty-bag: {}
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
false: False
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
false: False
, 
bag-member: x ↓∈ bs
, 
squash: ↓T
, 
exists: ∃x:A. B[x]
, 
and: P ∧ Q
, 
prop: ℙ
, 
subtype_rel: A ⊆r B
, 
nat: ℕ
, 
all: ∀x:A. B[x]
, 
or: P ∨ Q
, 
bag-size: #(bs)
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
cons: [a / b]
, 
top: Top
, 
uiff: uiff(P;Q)
, 
bag-null: bag-null(bs)
, 
null: null(as)
, 
bfalse: ff
, 
assert: ↑b
, 
ifthenelse: if b then t else f fi 
Lemmas referenced : 
bag_size_empty_lemma, 
equal-wf-T-base, 
bag-size_wf, 
nat_wf, 
bag-member_wf, 
empty-bag_wf, 
list-cases, 
length_of_nil_lemma, 
null_nil_lemma, 
btrue_wf, 
member-implies-null-eq-bfalse, 
nil_wf, 
btrue_neq_bfalse, 
product_subtype_list, 
length_of_cons_lemma, 
assert-bag-null
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalHypSubstitution, 
imageElimination, 
productElimination, 
thin, 
hypothesis, 
sqequalRule, 
extract_by_obid, 
natural_numberEquality, 
hyp_replacement, 
equalitySymmetry, 
Error :applyLambdaEquality, 
isectElimination, 
intEquality, 
cumulativity, 
hypothesisEquality, 
applyEquality, 
lambdaEquality, 
setElimination, 
rename, 
baseClosed, 
because_Cache, 
isect_memberEquality, 
equalityTransitivity, 
voidElimination, 
universeEquality, 
dependent_functionElimination, 
unionElimination, 
independent_isectElimination, 
independent_functionElimination, 
promote_hyp, 
hypothesis_subsumption, 
voidEquality, 
independent_pairFormation
Latex:
\mforall{}[T:Type].  \mforall{}[x:T].    False  supposing  x  \mdownarrow{}\mmember{}  \{\}
Date html generated:
2016_10_25-AM-10_26_58
Last ObjectModification:
2016_07_12-AM-06_43_04
Theory : bags
Home
Index