Nuprl Lemma : bag-member-not-bag-null

[T:Type]. ∀[bs:bag(T)].  uiff(↓∃x:T. x ↓∈ bs;¬↑bag-null(bs))


Proof




Definitions occuring in Statement :  bag-member: x ↓∈ bs bag-null: bag-null(bs) bag: bag(T) assert: b uiff: uiff(P;Q) uall: [x:A]. B[x] exists: x:A. B[x] not: ¬A squash: T universe: Type
Definitions unfolded in proof :  uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a member: t ∈ T not: ¬A implies:  Q false: False squash: T exists: x:A. B[x] uall: [x:A]. B[x] prop: true: True subtype_rel: A ⊆B guard: {T} iff: ⇐⇒ Q all: x:A. B[x] so_lambda: λ2x.t[x] so_apply: x[s] bag-null: bag-null(bs) bag-member: x ↓∈ bs cand: c∧ B
Lemmas referenced :  assert-bag-null bag-member_wf squash_wf true_wf iff_weakening_equal bag-member-empty-iff assert_wf bag-null_wf exists_wf bag_to_squash_list not_wf assert_of_null equal-wf-T-base list_wf member_exists list-subtype-bag equal_wf bag_wf l_member_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity independent_pairFormation isect_memberFormation introduction cut lambdaFormation thin sqequalHypSubstitution imageElimination productElimination extract_by_obid isectElimination hypothesisEquality hypothesis independent_isectElimination applyEquality lambdaEquality equalityTransitivity equalitySymmetry because_Cache natural_numberEquality sqequalRule imageMemberEquality baseClosed universeEquality independent_functionElimination voidElimination dependent_functionElimination cumulativity promote_hyp hyp_replacement applyLambdaEquality rename dependent_pairFormation productEquality independent_pairEquality isect_memberEquality

Latex:
\mforall{}[T:Type].  \mforall{}[bs:bag(T)].    uiff(\mdownarrow{}\mexists{}x:T.  x  \mdownarrow{}\mmember{}  bs;\mneg{}\muparrow{}bag-null(bs))



Date html generated: 2017_10_01-AM-08_54_32
Last ObjectModification: 2017_07_26-PM-04_36_21

Theory : bags


Home Index