Nuprl Lemma : dataflow-equiv_weakening

[A,B:Type]. ∀[f,g:dataflow(A;B)].  f ≡ supposing g ∈ dataflow(A;B)


Proof




Definitions occuring in Statement :  dataflow-equiv: d1 ≡ d2 dataflow: dataflow(A;B) uimplies: supposing a uall: [x:A]. B[x] universe: Type equal: t ∈ T
Lemmas :  dataflow-equiv_wf list_wf equal_wf dataflow_wf data-stream_wf

Latex:
\mforall{}[A,B:Type].  \mforall{}[f,g:dataflow(A;B)].    f  \mequiv{}  g  supposing  f  =  g



Date html generated: 2015_07_23-AM-11_06_28
Last ObjectModification: 2015_01_29-AM-00_11_04

Home Index