Nuprl Lemma : dataflow-to-Process_wf
∀[A,B:Type]. ∀[F:dataflow(A;B)]. ∀[g:B ─→ LabeledDAG(Id × (Com(P.A) Process(P.A)))].
  (dataflow-to-Process(
   F;
   g) ∈ Process(P.A))
Proof
Definitions occuring in Statement : 
dataflow-to-Process: dataflow-to-Process, 
Process: Process(P.M[P])
, 
Com: Com(P.M[P])
, 
dataflow: dataflow(A;B)
, 
ldag: LabeledDAG(T)
, 
Id: Id
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
apply: f a
, 
function: x:A ─→ B[x]
, 
product: x:A × B[x]
, 
universe: Type
Lemmas : 
rec-process_wf_Process, 
continuous-constant, 
ldag_wf, 
Id_wf, 
Com_wf, 
Process_wf, 
dataflow_wf, 
Com-subtype, 
subtype_rel_wf, 
dataflow-ap_wf, 
subtype_rel-ldag, 
subtype_rel_product
Latex:
\mforall{}[A,B:Type].  \mforall{}[F:dataflow(A;B)].  \mforall{}[g:B  {}\mrightarrow{}  LabeledDAG(Id  \mtimes{}  (Com(P.A)  Process(P.A)))].
    (dataflow-to-Process(
      F;
      g)  \mmember{}  Process(P.A))
Date html generated:
2015_07_23-AM-11_07_32
Last ObjectModification:
2015_01_29-AM-00_10_08
Home
Index