Nuprl Lemma : Com-subtype
∀[M:Type ─→ Type]
  ∀[A,B:Type].  (Com(P.M[P]) A) ⊆r (Com(P.M[P]) B) supposing A ⊆r B supposing ∀A,B:Type.  ((A ⊆r B) 
⇒ (M[A] ⊆r M[B]))
Proof
Definitions occuring in Statement : 
Com: Com(P.M[P])
, 
uimplies: b supposing a
, 
subtype_rel: A ⊆r B
, 
uall: ∀[x:A]. B[x]
, 
so_apply: x[s]
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
apply: f a
, 
function: x:A ─→ B[x]
, 
universe: Type
Lemmas : 
subtype_rel_tagged+_general, 
tagged+_wf, 
isect2_subtype_rel3, 
tag-case_wf, 
subtype_rel-tag-case, 
subtype_rel_wf, 
Id_wf, 
unit_wf2, 
isect2_subtype_rel2, 
all_wf
Latex:
\mforall{}[M:Type  {}\mrightarrow{}  Type]
    \mforall{}[A,B:Type].    (Com(P.M[P])  A)  \msubseteq{}r  (Com(P.M[P])  B)  supposing  A  \msubseteq{}r  B 
    supposing  \mforall{}A,B:Type.    ((A  \msubseteq{}r  B)  {}\mRightarrow{}  (M[A]  \msubseteq{}r  M[B]))
Date html generated:
2015_07_23-AM-11_06_36
Last ObjectModification:
2015_01_29-AM-00_11_18
Home
Index